The temporomandibular joint

2 The temporomandibular joint



Allison Middleditch




Introduction


The temporomandibular joint (TMJ) is formed by the articulation of the mobile condyle of the mandible with the glenoid fossa of the temporal bone. The mandibular condyle and glenoid fossa are separated by a cartilaginous disc that is aneural and avascular, except at its periphery in the non-load-bearing areas. The disc aids in cushioning and dissipating joint loads, promotes joint stability when chewing, lubricates and nourishes the joint surfaces, and enables joint movements.


Medial and lateral ligaments secure the disc to the condyle. Anteriorly the disc is attached to the capsule and the superior fibres of the lateral pterygoid muscle. Posterior to the disc is the retrodiscal area that contains synovial membrane, blood vessels, nerves, loose connective tissue, fat, and ligaments. The retrodiscal ligaments help to maintain the condyle–disc relationship. The retrodiscal tissues are susceptible to high or repetitive loads such as may occur in prolonged dental work. This loading can cause inflammation of the retrodiscal tissues.


The TMJ is a source of head and facial pain; evidence suggests that the majority of patients improve with non-interventional treatment (Toller 1973; Sato 1998, 1999). The term temporomandibular disorder (TMD) is used to describe a variety of medical and dental conditions relating to TMJ dysfunction (TMJD), such as true pathology of the TMJ and involvement of the muscles of mastication.


Four categories of TMD are recognized:








Clinical presentation


Although pain is the commonest symptom of TMJD there are a variety of associated symptoms:









These symptoms may occur in isolation or any combination. When taking the history it is essential to identify factors that could be contributing to the problem and the following points should be considered:









Emotional factors can contribute to head and facial pain; high stress levels have been associated with actions such as bruxism, clenching, and chewing gum that increase the loading and forces acting on the TMJ, and can also lead to muscle overuse, fatigue, and spasm. It is important to establish whether events at work or home are causing stress, and whether patients can identify a link between this and their symptoms.




Movement abnormalities


Physiological movements of the cervical and thoracic spine should be tested, and any movement abnormalities and pain provocation noted. A full range of TMJ movements should be observed. The therapist observes the quality of movement, the range available, whether it is different from the patient’s normal range, and deviations from symmetrical trajectories. It is useful to palpate the lateral condyle either laterally or posteriorly to feel the quality of movement. During mouth opening, a small indentation can be felt posterior to the lateral pole; in cases of hypermobility, a large indentation can be felt. If there is unilateral hypermobility, the mandible deviates towards the contralateral side of the hypomobile joint.


The ranges of movement assessed are depression, elevation, protraction, retraction, and left and right lateral movement. If the movement is limited or painful, the mandible can be gently moved passively to assess the true range of movement, and any locking or rigidity felt at the end of range can assist in clinical diagnosis. If extreme muscle spasm is present, there is a rigid end-feel, whereas opening limited by disc displacement without reduction does not have such a firm end-feel (Kraus 1994).


Joint sounds during active movements can be assessed using stethoscopic auscultation. Clicking, popping, grating, grinding, and clunking are often used to describe sounds accompanying TMJ movements. Other factors that should be taken into account are:








Joint noises are often a sign of disc displacement, but they can also be caused by joint surface irregularities of soft tissue perforation or joint fluid abnormalities (Takahashi 1992).


Accurate diagnosis of TMJD may require additional investigations, such as radiographs, three-dimensional computed tomography (CT) to assess for bony abnormalities, or magnetic resonance imaging (MRI) to assess the disc and the retrodiscal tissues. Disc position during physiological movements can be viewed using cine MRI.






Joint dysfunction


Joint stiffness is a common feature of TMJD, and can be caused by capsular tightness, muscle spasm, or internal derangement of the disc. Internal derangement is the most common arthropathy and is characterized by progressive anterior disc displacement. On clinical examination joint noises are often heard. Stiffness can be treated with intra-oral passive accessory manual mobilizations aimed at improving the gliding component of jaw motion. Joint mobilizations will not permanently relocate a displaced disc. In the first 10 to 15 mm of mandibular opening, the mandibular condyle rotates beneath the disc. Forward translation of the mandible starts to occur between 10 and 15 mm of mandibular opening, in conjunction with rotation; translation occurs in the upper joint space between the disc and the maxillary fossa. If translation is restricted, mouth opening may be limited to 20 to 25 mm.


When TMJD is unilateral several common joint restrictions can be observed:





Passive intra-oral joint mobilizations can be applied to the joint to increase range of movement, particularly the forward translation. These techniques are best applied with the patient in relaxed supine lying.




Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Jun 4, 2016 | Posted by in MANUAL THERAPIST | Comments Off on The temporomandibular joint

Full access? Get Clinical Tree

Get Clinical Tree app for offline access