The Shoe in Sports

Chapter 26 The Shoe in Sports




The relationship of the athlete and the shoe is extremely important to athletic performance. The desire for improved performance affects all athletes and influences not only training but also equipment research and design. Athletic shoe manufacturers rely on scientific research and prior experience in the development of their products. This chapter covers important aspects of design, technology, sports-specific needs, and medical and orthopaedic considerations in the development of athletic shoewear.



General Considerations





The last


The last, a three-dimensional (Fig. 26-2) form on which the shoe is made, is considered by many to be the foundation for shoe production and development. Foot shape may vary with sports activities, and this is a major area of concern in the development of the last. The shape of the shoe toe box, instep, girth, and foot curvature are determined by the last. The biggest last variations occur in girth (or widest part of the forefoot) and in heel width.






Materials




Sole materials


Rubber is the most widely used sole material because of its versatility, durability, and performance. The most commonly used forms of rubber are a highly compressed molded form or a blown microcellular form. Carbon rubber and styrene-butadiene rubber are the two most common rubber compounds used in athletic shoes. Often used in running-shoe soles, black carbon rubber is the hardest wearing. Styrene-butadiene rubber also is hard and is used in tennis and basketball shoes.












The Outer Sole


The outsole is the most plantar surface of the shoe that makes contact with the ground and usually is attached to a midsole to form a complete sole. Most athletic shoes have outer soles of hard carbon rubber or blown rubber compounds. Blown rubber is the lightest outsole material but is not as durable as carbon rubber. Many outsoles are composed of both blown and carbon rubber, with blown rubber in the forefoot and midfoot and carbon rubber used in the high-wear area of the heel. Gum rubbers are hard wearing and grip well on most surfaces. PU is less versatile but also suitable for outsole material and seems to possess good durability. Nylon, leather, and PVC have specific outsole applications for certain sports.




Outer sole designs


Patterns can enhance stability and traction. They also can improve shoe lightness by exposing the middle part of the midsole, thereby eliminating part of the outsole and the associated weight. The design of the outsole (Fig. 26-4) can provide cushioning, traction, pivot points, flexpaths, and wear plugs.



Outsoles are specific for surface, weather condition, and sport. Outsole options include:











Traction provided by the outsole is an important consideration in the design of a sport shoe and is directly related to the ability of the shoe to develop frictional forces with the playing surface. Traction needs depend on the specific sports needs. Too little traction may have a negative effect on athletic performance, and too much traction may put the athlete at risk for injury.1


A running shoe should create a grip firm enough with the ground so that propulsion forces created by the runner will not be lost with push-off. Push-off has the highest traction needs; therefore the forepart of the outsole should provide the most traction. The outsole rubber used in running shoes usually is blown rubber (air injected to lighten it) or hard carbon rubber.


Cleated shoes must address a compromise between performance and protection of the athlete. Rotational traction, which is expressed by the torque about a normal axis that is developed to resist rotation of a shoe on a playing surface, must be reduced to decrease the incidence of injury while providing sufficient traction. Both cleat length and outsole material affect friction. Torg and Quendenfeld1 concluded that the increased rotational traction characteristics of some football shoes are related to an increase in number of significant knee injuries.


The necessity for lateral movement with court sports makes the traction characteristics of court shoes important. A flat outsole pattern develops the greatest frictional forces, whereas a herringbone pattern develops less.2 With sprinting, initial ground contact is made with the front of the shoe. At foot strike a large horizontal velocity is created, resulting in a high braking force that can cause a backward slide. Anterior spikes help to prevent slipping. With jumping events, an athlete converts the large horizontal momentum of run-up to a vertical momentum at foot plant. The spikes prevent foot slip and allow the development of large propulsive forces necessary for long jump and triple jump.


With golf shoes, motion is primarily stationary with little horizontal velocity. Golf shoes provide a base of support that allows the performance of coordinated body movements needed in hitting the ball. A nonvertical alignment of the spikes prevents slipping in this sport, which mainly requires anterior and lateral forces.


Boating shoes require a large amount of natural rubber to prevent slippage on wet surfaces.



Midsoles and Wedges


Most of the recent advances in the athletic shoe industry have been made in midsole design and materials. The midsole and heel wedge are sandwiched between the upper and the outsole, attaching to both. These components provide cushioning, shock absorption, lift, and control.






Other Component Parts











New Components and Designs




Air soles


First introduced in 1979 by Nike, this concept used encapsulated air units in the midsole to enhance cushioning. Ambient air (Etonic) or Freon (Nike) also can be used. Depending on the model, the air units may be in the heel, forefoot, or both. Initial reports noted that, although air systems had superior shock absorption and potential energy rebound, stability was poor.4 Stability in the context of sports refers to the ability of the shoe to resist excessive or unwanted motions of the foot and ankle. Shoes with soft, well-cushioned midsoles allow significantly more motion than firmer shoes, and a poor design can encourage instability. Newer designs have addressed the stability problem with success. Air systems are not as susceptible to compaction as EVA, PU, and other midsole materials and therefore are thought to be more durable.





< div class='tao-gold-member'>

Stay updated, free articles. Join our Telegram channel

Jul 18, 2016 | Posted by in SPORT MEDICINE | Comments Off on The Shoe in Sports

Full access? Get Clinical Tree

Get Clinical Tree app for offline access