The effect of 8-weeks proprioceptive exercise program in postural sway and isokinetic strength of ankle sprains of Tunisian athletes




Abstract


Objective


Our objective is to investigate the effects of proprioceptive exercises rehabilitation on isokinetic strength and postural balance in athletes with sprain ankle.


Materials and methods


The ankles of 16 subjects were tested: eight in the functional instability (FI) group and eight non-injured (NI) subjects in the control group. Subjects were asked to take part in a testing session. The test order for the postural stability and isokinetic strength tests was randomized to avoid learning or fatigue effects. The testing session started with a 5-minute warm-up. Subjects were then instructed to perform several lower body flexibility exercises. The test procedure consisted in static assessments, where single-limb (right and left) stance postural stability was assessed. Three practice trials were allowed for each subject. The assessment quantifies postural sway velocity while the athlete stands calmly on one foot on the force plate, for each leg. They were asked to stand as still as possible for 30 s, upper limbs along the body. The subjects were requested to maintain balance with eyes open and then with the eyes closed on the firm surface. The sway velocity (in degrees per second) is given for all trials. Subjects were allowed a 1-minute rest between tests. The regime of isokinetic evaluation of dorsi-plantar flexions is concentric, with three successive speeds: slow (30°/s, reps 5), average (60°/s, reps 10), and fast (120°/s, reps 15), according to the protocol established by European Group for the development and the isokinetic research and the procedural guidelines. Relative moment of strength and times of acceleration and deceleration were calculated for each set of isokinetic testing repetitions per body side, muscle group and testing speed.


Results


The results of tests–retest and between both groups (injured vs. healthy) show that after eight weeks of proprioceptive work, significant increase of maximal strength, decrease in times of acceleration and deceleration at the level of plantar flexors and better stability of the injured limb at slow and average ( P < 0.05). For the healthy limb, improvements varying from 1 to 39% were obtained between test and retest on all the variables. However, these variations were not statistically significant.


Conclusion


Proprioceptive training exercises can effectively stabilize an unstable ankle above for muscular and postural control. However, 8 weeks does not assess whether we have achieved maximum effect. In addition, we do not know to what extent these effects will continue over time. It would be interesting to later re-evaluate the athletes for the effect of this treatment, which is based on a proprioceptive training program on a year or more.


Résumé


Objectif


Notre objectif est de déceler l’effet de huit semaines de travail proprioceptif sur les performances musculaires isocinétiques et posturales de l’articulation de la cheville suite à une entorse moyenne à recul d’un moins.


Méthodologie


Seize sportifs ont volontairement participé à cette étude. Ils sont répartis équitablement en : groupe atteint, sujets avec séquelles d’entorse, ont suivi durant 24 séances de 30 min pendant deux mois avec un programme d’entraînement proprioceptif et groupe contrôle. Deux évaluations, une quantification isocinétique de la force musculaire des fléchisseurs plantaires et dorsaux sur 3 vitesses angulaires par système « Biodex 3 » et une exploration de l’équilibre postural en appui unipodal sur plate-forme « Balance Master ® », ont été réalisées en pré- et post-programme pour chaque groupe.


Résultats


Les données obtenus montrent que l’entorse entraîne une diminution du moment de force maximal sur les trois vitesses (30°/s, 60°/s, 120°/s) étudiées et une augmentation des durées d’accélération et de décélération en faveur du membre lésé ( p < 0,05). Les vitesses d’oscillations du centre de gravité (CG) en appui unipodal est statistiquement élevés au niveau du membre lésé. À l’issue de 8 semaines de travail proprioceptif sur plan stable et instable et avec différents degrés de difficultés, on a obtenu une amélioration significative des performances des extenseurs et des fléchisseurs dorsaux de la cheville à 60°/sec. Une diminution de temps d’accélération et de décélération. Une amélioration très importante de la stabilité posturale caractérisée par une diminution significative de la vitesse d’oscillation de centre de gravité en appui unipodal. Les résultats de deux membres deviennent comparables.


Conclusion


Un programme de huit semaines semble être suffisant et efficace pour réduire les répercussions de l’entorse sur les performances musculaires isocinétiques et sur la stabilité posturale de la cheville en appui unipodal.



English version



Introduction


Injuries to the ankle joint are among the most common of all sport-related injuries. Sports that register the highest incidence of ankle sprains are those requiring sudden, stops and pivoting, such as soccer, volleyball, and basketball . These specific movements often result in ankle inversion during plantar flexion, which is the most common type of ankle sprain . Research has shown that 25–40% of athletes who suffer from an ankle sprain will experience a recurrent sprain due to acquired instability . However, more recent research points out the importance of restoring proprioception to the damaged muscles and ligaments following an ankle sprain .


Proprioception refers to the inborn sense of relative positioning of the body in order to execute kinesthetic movements . Proprioception is a specialized variation of the sensory modality and encompasses the sensations of joint movement and joint position. Joint position’s sense is the ability to reproduce a predetermined joint angle either actively or passively . Good proprioception is important for promoting dynamic joint and functional stability in sports (standing, walking and running) and in daily activities living. The ankle plays an integral role in maintaining balance .


Based on clinical experience, the majority of physical therapy clinics and athletic training for ankle sprain incorporate both strengthening and proprioception exercises. Numerous studies have looked at the effects of strengthening exercises , proprioceptive exercises, or a combination of both on the return of a patient to functional activity .


Methods of proprioceptive rehabilitation include single-leg stance , balance, and coordination exercises and ankle disk training . Both help to improve the neuromuscular control in athletes . Mattacola and Dwyer reported that a definitive series of outcome studies documenting the number of treatments and the combination and the volume of exercises necessary to return athletes with ankle instability to full function is still lacking. Studies have shown that balance and coordination training reduce the chance of recurrent ankle sprains.


The evidence investigating effects of proprioceptive exercise therapy was limited due to poor methodological quality; therefore the data should be interpreted with caution. However, there is some agreement that peroneus longus muscle reaction time may improve after proprioceptive retraining. Nevertheless, differences in training activities, duration and frequency of both rehabilitation program make it difficult to recommend specific evidence-based exercises that may influence this. There is some agreement that ankle disk training improves tibialis anterior reaction time , though there is no consensus regarding specific types, duration and frequency of training required to influence this, due to methodological differences. There is consensus that proprioceptive exercise may improve postural sway in subjects with agreement from two studies that 6-week composite exercise program using modalities, such as ankle disks, tilt boards and single-leg standing activities are effective . However, there is no agreement in optimum exercise frequency due to methodological differences.


There is conflicting evidence regarding the effect of 6-week composite proprioceptive exercise programs, therefore recommendations for practice cannot be made. In light of the limited evidence relating to the effects of proprioceptive exercise rehabilitation, there is a clear need for further high-quality research to draw a conclusion. More studies are needed to show the overall benefits of proprioceptive exercise for both the stable and unstable ankle. Our objective is then to investigate the effects of proprioceptive exercises rehabilitation on isokinetic strength and postural balance in athletes with sprain ankle.



Materials and methods



Subjects


Sixteen subjects were recruited: eight had unilateral ankle sprain symptoms, (experimental group: ExpG) and eight had bilateral non-injured ankles (control group: CG).


All subjects were volunteers. Before testing, none of the subjects were actively involved in any kind of physical activity and were not under any rehabilitation program. By self-report, NH-group subjects had no history of ankle inversion sprain or lower-extremity pathology, including fracture, sprain or arthritis. Ankle passive and active range of inversion, eversion, plantarflexion and dorsiflexion and palpation over the calcaneofibular and anterior talofibular ligaments were painless.


To be characterized as functionally unstable, subjects had to satisfy the following criteria:




  • experienced at least one significant lateral (inversion) ankle sprain of either the right or left ankle, but not both, after which the subject was unable to bear weight or was placed on crutches, within the last year;



  • no reported history of bone fracture to either ankle;



  • sustained at least one repeated injury or the experience of a feeling of instability or “giving way” in either the right or left ankle, but not both;



  • not undergoing any formal or informal rehabilitation of the unstable ankle;



  • no evidence of mechanical instability as assessed by a physician using an anterior drawer test .




Test procedures


Subjects were asked to take part in a testing session. Before testing, subjects signed the informed consent form. The order for the postural stability and isokinetic strength tests was randomized to avoid learning or fatigue effects. The testing session started with a 5-minute warm-up. Subjects were then instructed to perform several lower body flexibility exercises.



The Balance Master ® system


The Balance Master ® provides objective assessment and retraining of the sensory and voluntary motor control of balance with visual biofeedback. The system uses a fixed, 18 × 60″ dual force plate to measure the vertical forces exerted through the patient’s feet. The long force plate enhances assessment and training capabilities. The interactive technology and clinically proven protocols allow the clinician to objectively assess patients performing a range of tasks, from essential activities of daily living through to high-level athletic skills. The objective data aids in the design of effective treatment and/or training program focused on the specific sensory and motor components underlying a patient’s functional limitations.


The goal in managing balance and mobility disorders, is the minimization of disability and improvement of functional performance. However, patients with similar pathologies frequently present significant differences in impairments and functional limitations. In view of these differences, patients with similar pathologies respond differently to a given treatment.


NeuroCom offers a comprehensive library of assessment protocols for quantifying the impact of impairments on a patient’s ability to perform balance and mobility tasks required for safe and effective function in daily life. In short, the protocols provide the information required for accurate diagnosis of balance dysfunction and effective clinical management.


All NeuroCom assessments are compatible with the World Health Organization (ICDIH-2) and Nagi disablement frameworks and have been validated by extensive scientific and clinical research .



Static balance assessment


We assessed single-limb (right and left) stance postural stability. Three practice trials were allowed by subject. The assessment quantifies postural sway velocity while the athlete stands calmly on one foot on the force plate. The relative absence of sway in the “hold still” position indicates better stability. They were asked to stand as still as possible for 30 s, the upper limbs along the body. The subjects were requested to maintain balance with the eyes opened (EO) and then with the eyes close (EC) on the firm surface. During the EO condition, subjects were instructed to focus their vision on a fixed-level target. In the EC condition, they were asked to keep their gaze straight ahead. This assessment quantifies the postural sway velocity of each leg. The sway velocity (in degrees per second) is given for all three trials. Subjects were allowed a 1-minute rest between tests .



Isokinetic strength measurement


The test estimates successively the dominant side (defined by the limb of support during the shooting or during the call jump), then the contralateral side. A period of two minutes separates each series of movements whereas five minutes are necessary for the preparation and for the warm-up of highly-rated set. The regime of evaluation is concentric. The regime of isokinetic evaluation of dorsi-plantar flexions is concentric, with three successive speeds: slow (30°/s, reps 5), average (60°/s, reps 10), and fast (120°/s, reps 15), according to the protocol established by European Group for the development and isokinetic research. These results were communicated for every ankle .


Isokinetic testing speeds is essential for optimal strength evaluation, given that in slow muscle action the vast majority of motor units are recruited, while faster testing velocities enrich the force-velocity spectrum of the acting muscles.


The choice of the tested positions is crucial. For our part, we choose to realize the test with a knee flexion of about 20–30°, which seems to us to be the most functional . The athlete was tested in a seated position (90° hip angle) with the body maximally stabilized by straps around the thigh, the waist. Prior to isokinetic assessment, it was given a 10–15 min warm-up consisting of mild pedalling on an ergometric bicycle and ballistic (dynamic) muscle stretching exercises of very short duration (4–5 sec). The familiarization protocol comprised three submaximal and two maximal isokinetic actions. A five-minute rest was given after each angular speed testing.


The instruction was to develop the maximal strength during the phase of push (flexor plantar of the ankle) and during the phase of drive (dorsal flexor of the ankle) and to be active . The changes of the sense of the movement between the flexor and the extensor and conversely were made without pause.


Average peak torque, relative moment of strength and time of acceleration and deceleration values were calculated for each set of isokinetic testing repetitions per body side, muscle group and testing speed.



Training program


The program includes 24 sessions displayed over 8 weeks (3 sessions/week). Every session lasts between 20 and 30 minutes.


For the effective reeducation, it is necessary to approach real situations during the treatment processing. Thus, it is necessary to include exercises on stable plane and on irregular ground, changes of direction of the jumps and other techniques in connection with the sportsman’s specific activity .


The training program consisted of 14 basic exercises on and off the balance board, with variations on each exercise. The program provided the coach each week with 4 prescribed exercises:




  • 1 exercise without any material;



  • 1 exercise with a ball only;



  • 1 exercise with a balance board only;



  • 1 exercise with a ball and a balance board.



Each week, all 4 prescribed exercises were of similar difficulty and intensity, with a gradual increase in difficulty and intensity during the 8-week. During each warm-up, the coach chose 1 of the 4 prescribed exercises to carry out. The total duration of 1 exercise, in which both ankles were trained, was approximately 5 minutes. Once an exercise was carried out, it could not be chosen again during the same week. This program was pretested for feasibility in 4 teams prior to the start of the intervention.



Statistical analysis


The analysis of the results was led by statistical SPSS software (version 18 for Windows, Inc., Chicago). The average and the standard deviation were calculated for each parameter. For the comparison of the results obtained on both lower limbs of the same subject, we used the Wilcoxon test, which allows estimating if the difference is significant when variables are dependent. To compare the results obtained by both groups of subjects, we used the Mann–Whitney test. This test is used with independent values. It is about one of the most powerful not parametric tests. With this test, it is also possible to compare groups of different sizes. All the statistical tests were considered as significant when P < 0.05, which means that there is less than 5% of luck than the difference is due at random.



Results


According to the anthropometric data, both studied groups are statistically comparable. All the subjects suffer from a side sprain extern, which is characterized by the achievement of the side collateral ligament ( Table 1 ).



Table 1

Anthropometrics’ variables of injured group (IG) and control group (CG).



















Age (year) Weight (Kg) Height (cm)
IG 21.56 ± 2.27 68.93 ± 10.41 173.75 ± 7.54
CG 20.62 ± 1.5 73.12 ± 16.97 179.75 ± 9.52


The results of tests–retest and between both groups (injured vs. healthy) show that after eight weeks of proprioceptive work, significant increase of maximal strength, decrease in times of acceleration and deceleration at the level of plantar flexors ( Table 2 ) and better stability of the injured limb at slow and average ( P < 0.05) ( Table 3 ).



Table 2

Evolution and average ± SD of isokinetic strength performances of flexor and extensor muscles of injured ankle before and after training program.









































































































Movement Sprain ankle
Planter flexion Dorsal flexion
Variables
Speed (°/sec) 30 60 120 30 60 120
Peak torque
Test 73.56 ± 21.81 69.74 ± 18.26 49.96 ± 15.75 24.09 ± 5.82 17.15 ± 4.16 16.54 ± 7.64
Retest 96.04 ± 32.07 95.73 ± 28.84 65.15 ± 17.05 26.55 ± 8.79 22.7 ± 5.18 19 ± 5.23
Gain (%) 30.56 37.26 30.4 10.21 32.36 14.87
Acceleration time (sec)
Test 22.5 ± 7.07 35 ± 7.56 47.5 ± 19.09 33.75 ± 5.18 48.75 ± 23.57 86.25 ± 21.34
Retest 15 ± 5.35 27.5 ± 7.07 43.75 ± 14.08 32.5 ± 7 42.5 ± 4.63 71.25 ± 19.59
Gain (%) −33.3 −21.4 −7.8 −11.1 −12.8 −17.4
Deceleration time (sec)
Test 63.75 ± 28.75 78.75 ± 31.82 116.25 ± 54.76 65 ± 46.29 77.5 ± 31.05 105 ± 60.47
Retest 46.25 ± 5.35 58.75 ± 11.26 103.75 ± 17.68 47.5 ± 27.12 60 ± 16.04 97.5 ± 27.12
Gain (%) −27.4 −25.4 −10.7 −26.9 −22.6 −7.14


Table 3

Speed of sway of center of gravity in injured and uninjured limb compared to control group before and after training program ( P : signification) * ( P < 0.05).













































Speed of sway (deg/sec) Test Retest P Control group P
Injured limb
Firm 0.79 ± 0.13 0.7 ± 0.14 0.2 0.72 ± 0.14 0.751
Supple 1.011 ± 0.35 0.85 ± 0.94 0.29 0.89 ± 0.15 0.493
Uninjured limb
Firm 0.97 ± 0.17 0.7 ± 0.17 0.013 * 0.87 ± 0.09 0.04 *
Supple 1.38 ± 0.5 0.81 ± 0.16 0.002 * 1.07 ± 0.19 0.017 *


For the healthy limb, improvements varying from 1 to 39% were obtained between test and retest on all the variables. However, these variations were not statistically significant.



Discussion


Ankle sprain is the most common sports injury, predominantly (85–90%) affecting the lateral ligaments of the ankle . In connection with this, sport medicine clinicians commonly see athletes who have sustained an ankle injury. Proprioception of ankle is essential to the balance of the human body during functional activities such as position standing and walking. It has been shown that subjects with ankle sprain show a decrease in postural stability, impairment of proprioception and peripheral muscle function of the ankle with respect to healthy subjects. Many previous researches investigated the residual effects of the ankle sprain and found deficits in the sense of the position of the joint (proprioception), deficit in muscular strength, deficit at the time of activation of the peroneal muscles , balance deficits , and a decrease in the amplitude of movements of dorsiflexion . It seems that deficits of the proprioceptive system are the main causes of muscle weakness and postural instability after the ankle sprain . A period of 6 to 12 weeks of rehabilitation is sufficient to achieve the objectives of rehabilitation success . Concerning the content of the proprioceptive training program, it is based on exercises in discharge and then support on a stable plane in varied situations of imbalance, of equilibration on an unstable plane (trays I and II of Freeman), combined with coordination exercises and exercises of jump with a reception on an instable plane .


One of the objectives of rehabilitation will be working the postural balance in feedback (stimulation of receptors) to protect the ankle when the foot is on the ground. Despite this, rehabilitation must be gradual and carried out in conditions of safety for the ankle.


In our study, after 8 weeks of proprioception rehabilitation, we observed a significant improvement in extensors and flexor strength of ankle at 60 deg/sec speed. Consideration of evolution throughout the program of the two ankles, injured or healthy, allowed us to see a performance increase that corresponds to a gain of strength expressed in percentages of positive developments. But the injured ankle is slightly less efficient. Improvement in strength muscles of the ankle is essential for a rapid return to prevent future sprains . An adequate force is necessary for appropriate functional movements and motor adaptations. On the other hand, muscle work enables an increase in balance capacity. The automation of task allows to focus on other aspects of sport and decreases the level of central fatigue, which means the risk of accident. Muscle rehabilitation is actually done after obtaining functional articular amplitude . The proposed exercises are progressive and responsive to the specialty of the subject. Exercises are carried out on both limbs to have more confidence in injured limb and improve the motor control. We observed a decrease in acceleration and deceleration time set by the subject to catch up with the predetermined speed . Currently, proprioceptive rehabilitation is based on the theory of Freeman . Sprain, latency between the occurrence of an imbalance and the reaction of the fibular considerably increased elongation suffered by the ligament system. According to Freeman, rehabilitation aims to bring proprioceptive loop of physiological standard latency. Neuromuscular rehabilitation should also result in anticipation of peri-articular muscle contractions to provide effective protection of the ankle against the indiscriminate mechanisms.


On the postural assessment, we found a very important improvement of postural stability characterized by equitable distribution of the percentage of body weight on both limbs (healthy vs. injured) and by a significant decrease in the rate of oscillation of centre of gravity in unipodal support. The results of both ankles become comparable. Compared to the control group, the positive effects of proprioceptive work are remarkable. The control group is supported at the level of their sprains by a simple rest for 2 weeks, ice, compression… then the rapid resumption of physical activity. Considering the evolution during the 8 weeks, the results are stable between T1 and T2.


Other research has shown that the sprain of the ankle without rehabilitation can be restored after one year . The effectiveness of a training program for 4 to 8 weeks on Board of balance (trays I and II of Freeman) on postural control and the perceived stability has been well documented and the residual symptoms observed after a sprain of the ankle can be reduced by 12 weeks of balance rehabilitation program.


Neuromuscular rehabilitation should not be focused only on spinal reflexes but should also lead the anticipation of peri-articular muscle contractions, to provide effective protection of the ankle against the indiscriminate mechanisms.



Conclusion


Thus, our results show the importance of training proprioceptive rehabilitation of the ankle injury. These exercises can effectively stabilize an unstable ankle and break the vicious circle of recurrent sprains and subsequently, avoid the loss of proprioceptive sensitivity and muscle atrophy. However, our support for 8 weeks does not assess whether we have achieved maximum effect. In addition, we do not know to what extent these effects will continue over time. It would be interesting to later re-evaluate the athletes for the effect of this treatment, based on a proprioceptive training program on a year or more.


Disclosure of interest


The authors declare that they have no conflicts of interest concerning this article.





Version française



Introduction


Les blessures à l’articulation de cheville sont parmi le plus commun de tous les traumatismes sportifs. Les sports qui enregistrent la fréquence la plus haute d’entorses de cheville est ceux exigeant un soudain arrêt et pivot, comme le football, le volley et le basket-ball . Ces mouvements spécifiques aboutissent souvent à l’inversion de cheville pendant la flexion plantaire, qui est le type le plus commun d’entorse de cheville . La recherche a montré que 25–40 % des athlètes qui souffrent d’une entorse de cheville éprouveront une entorse récurrente en raison de l’instabilité acquise . Cependant, la recherche plus récente indique l’importance de rétablir proprioception aux muscles endommagés et aux ligaments après une entorse de cheville .


La proprioception se réfère au sens de positionnement du corps pour exécuter des mouvements kinesthésiques . La Proprioception est une variation spécialisée de la modalité sensorielle et englobe les sensations de mouvement commun et la position commune. Le sens de la position commune est la capacité de reproduire un angle commun prédéterminé activement ou passivement . Cette sensation kinesthésique est important pour promouvoir la stabilité fonctionnelle et la dynamique articulaire lors de la pratique sportive (la station debout, la marche et la course) et lors des activités quotidiennes. La cheville joue un rôle intégral dans le maintien de l’équilibre . Basé sur l’expérience clinique, la majorité d’experts de la rééducation, de physiothérapie et de la préparation sportive incorpore tant des exercices de proprioception que de renforcement. De nombreuses études ont regardé les effets des exercices de renforcement musculaire , des exercices de proprioceptive, ou une combinaison d’entre tous les deux sur le retour d’un patient à l’activité fonctionnelle .


Les méthodes de rééducation proprioceptive incluent la position en appui unipodal , les exercices d’équilibre et de coordination et travail sur le plateau instable . Ces méthodes aident à améliorer le contrôle neuromusculaire des athlètes . Mattacola et Dwyer ont rapporté le travail proprioceptif exige une programmation en termes de nombre de série, volume et fréquence pour atteindre l’efficacité recherché. Malgré les différences et divergences méthodologiques en termes de contenu du programme et élaboration, certains résultats peuvent être retenus à titre de comparaison et à titre indicatif. En effet le travail proprioceptif a montré son efficacité sur le plan isocinétique par l’amélioration du temps de réaction du muscle tibial antérieur , et sur le plan postural de la diminution des vitesses d’oscillation du centre de gravité du corps suite à six semaines de travail proprioceptif sur les disques stable et instables, en appui unipodal .


Notre objectif est d’évaluer les effets, de huit semaines de travail proprioceptif, d’une part, sur les performances isocinétiques des muscles effecteurs de la cheville dans le plan sagittal et, d’autre part, sur l’équilibre postural du corps chez des sportifs victimes d’entorse moyenne de la cheville.



Population et méthodes



Population d’étude


Seize sportifs ont été recruté pour participé volontairement à cette étude, repartis équitablement en deux groupe. Un groupe expérimental victime unilatéralement d’entorse moyenne de la cheville (groupe expérimental : GExp). Un groupe contrôle composé de sportifs sains indemnes de toutes pathologies articulaires, ligamentaires et musculaires au niveau des membres inférieurs (groupe contrôle : GC).


Avant l’évaluation, des sujets n’ont été activement impliqués dans aucune d’activité physique et ne suivaient aucun programme de rééducation.


Pour être caractérisée comme instables sur le plan fonctionnel, les sujets devaient répondre aux critères suivants :




  • entorse de la cheville à un recul d’un mois soit du membre droit ou gauche, mais pas les deux, après lequel le sujet était incapable de supporter le poids ;



  • aucun antécédent signalé de fracture de l’os de la cheville ;



  • subi au moins un blessures répétées ou l’expérience d’une sensation d’instabilité en droit ou en cheville gauche, mais pas les deux ;



  • ne subissant aucune réhabilitation formelle ou informelle de la cheville instable ;



  • aucun signe d’instabilité mécanique, telle qu’évaluée par un médecin à l’aide d’un test de tiroir antérieur .




Procédure du test


Les sujets ont été invités à prendre part à une séance de test. Avant l’essai, les sujets ont signé le formulaire de consentement. L’ordre pour les essais de force isocinétique et de la stabilité posturales est aléatoire pour éviter d’apprentissage ou des effets de la fatigue. La séance de test a commencé par un échauffement de 5 minutes. Sujets devaient ensuite effectuer plusieurs exercices de flexibilité des membres inférieurs.



Le système « Balance Master ® »


Le Balance Master ® fournit une évaluation objective du contrôle sensoriel et moteur volontaire de l’équilibre avec biofeedback visuel. Le système utilise une double plate-forme de 18 × 60″ pour mesurer les forces verticales exercices par les pieds lors de l’appui. Le test d’équilibre calcule la position du centre de pression relatif aux coordonnées de la plate-forme en utilisant la valeur de la taille du sujet testé. Puis il fournit une vitesse de balancement du centre de gravite en degré par seconde : plus cette vitesse est faible, plus le sujet est stable.


La technologie interactive et clinique des protocoles permet au clinicien d’évaluer objectivement les sujets accomplissant des taches essentielles qui sont issues de l’activité de la vie quotidienne ou/et des compétences des activités sportives de haut niveau. Ce système offre des protocoles d’évaluation qui quantifient l’impact des défaillances ou des pathologies articulaires sur des taches nécessaires à la sécurité et l’efficacité motrice au cours de l’activité quotidienne. Tous les tests d’évaluation sont compatibles avec l’Organisation mondiale de la santé (ICDIH-2) et sont valides par des recherches scientifiques et cliniques .



Évaluation de l’équilibre statique


Les tests débutent par l’installation du sportif sur la plate-forme. Le sujet se met debout sur la plate-forme en alignant chaque malléole interne avec les lignes larges et le bord postérieur du talon à la hauteur de la ligne appropriée. L’appui monopodal quantifie l’équilibre postural en position debout sur un côté puis l’autre. Le temps d’enregistrement est de dix secondes avec trois essais successifs. Les résultats sont exprimes en termes de moyenne des trois essais. Ce protocole propose de mesurer des vitesses d’oscillations, en appui monopodal yeux ouverts puis yeux fermés.


Les résultats sont communiques pour les deux membres (droit–gauche). Cette évaluation quantifie la vitesse de balancement postural de chaque jambe. La durée d’enregistrement est 30 s avec un repos entre les essais d’une minute .



Évaluation isocinétique


Avant le test, soit au moins trois heures après le dernier repas, chaque sujet a été soumis à un échauffement standardisé de dix minutes sur tapis roulant. Le sujet a ensuite été familiarisé à la méthode d’évaluation isocinétique par la réalisation de trois à cinq mouvements sous-maximaux selon les vitesses isocinétiques choisies. La consigne était de développer la force maximale à la fois lors de la phase de poussée (flexion plantaire de la cheville) et lors de la phase de traction (flexion dorsale de la cheville) et d’être actif. Les changements du sens du mouvement entre la flexion et l’extension ont été effectués sans temps d’arrêt.


Le test évalue successivement le côté dominant (défini par le membre d’appui lors du tir ou d’appel lors du saut) puis controlatéral. Une période de deux minutes sépare chaque série de mouvements tandis que cinq minutes sont nécessaires à la préparation et à l’échauffement du côté opposé. Le régime de l’évaluation est concentrique. Le test a débuté par vitesse lente (30°/s, reps 5), vitesse moyenne (60°/s, reps 10), et enfin vitesse rapide (120°/s, reps 15). Ces résultats étaient communiqués pour chaque cheville .


Le choix de la position de test est crucial. Genou en extension, les jumeaux sont sollicités, les valeurs de FP sont maximales. La force des muscles extenseurs est plus importante en position genou tendu . Genou fléchi à 90°, les jumeaux sont peu efficaces, les valeurs de FP sont diminuées, les valeurs de FD sont augmentées. Pour notre part, nous choisissons de réaliser le test avec une flexion de genou de 20° à 30°, ce qui nous semble être le plus fonctionnel .


Des ajustements du dynamomètre et de la chaise ont été faits pour aligner le milieu du pied avec le milieu de la rotule. Deux bandages ont été enroulés autour de l’extrémité proximale à la rotule et au bassin pour réduire au minimum les mouvements de la hanche et du genou pendant le test.


Le pied est stabilisé dans le système d’adaptation par deux sangles au niveau de sa partie dorsale pour réduire au minimum le mouvement entre le pied unique et la plate-forme. Pour que chaque sujet donne un effort maximal, un encouragement verbal leur été donné pendant toute la procédure des tests. Aucun des sujets n’a senti n’importe quel inconfort pendant les tests.


Les paramètres étudies sont comme suit :




  • moment de force maximale (encore appelé couple de force, ou pic de couple, ou moment maximum) : exprimé en Newton-mètre (Nm), il correspond au moment de force le plus élevé développé au cours du mouvement isocinétique ;



  • moment de force relatif : exprimé en N.m/kg. Il s’agit du moment de force le plus élevé développé au cours du mouvement rapporté à la masse corporelle ;



  • temps d’accélération et de décélération : C’est le temps mis par le sujet pour rattraper la vitesse prédéterminée.




Le programme de travail proprioceptif


L’objective de ce programme est d’améliorer la coordination des muscles péri-articulaires et de reprogrammer la boucle proprioceptive : diminution de temps de latence et amélioration de réactivité musculaire.


Le programme comprend 24 séances étalées sur 8 semaines (3 séances/semaine). Chaque séance dure entre 20 à 30 minutes.


Pour la rééducation efficace il faut approcher pendant le traitement à des situations réelles. Donc il est nécessaire d’inclure des exercices sur plan stable et sur terrain irrégulier, des changements de directions des sauts et d’autres techniques en lien avec l’activité spécifique de sportif .


Le programme contient 14 exercices de base avec et sans plateau et avec des variations au niveau de chaque exercice. Chaque semaine on propose 4 types d’exercices :




  • exercice sans matériel ;



  • exercice avec balle seulement ;



  • exercice sur plateau d’équilibre ;



  • exercice avec ball et sur plateau d’équilibre.



Ces exercices doivent avoir même degré de difficulté et intensité avec une augmentation progressive sur les 8 semaines.


La duré total de l’exercice est d’environ 5 minutes pour les deux chevilles. Le travail est organisé sous forme de quatre ateliers.



Analyse statistique


L’analyse des résultats a été menée par le logiciels statistiques SPSS (version 18 pour Windows, Inc., Chicago, IL). La moyenne et l’écart type ont été calculés pour chaque paramètre mesuré.


Pour la comparaison des résultats obtenus sur les deux membres inférieurs d’un même sujet, nous avons utilisé le Wilcoxon test, qui permet d’évaluer si la différence est significative lorsque les variables sont dépendantes.


Pour comparer les résultats obtenus par les deux groupes de sujets, nous avons utilisé le Mann-Whitney test. Ce test est utilisé avec des valeurs indépendantes. Il s’agit d’un des tests non paramétriques les plus puissants (Portney, 2000). Avec ce test, il est également possible de comparer des groupes de taille différente.


Tous les tests statistiques ont été considérés comme significatifs lorsque p < 0,05, ce qui signifie qu’il y a moins de 5 % de chance que la différence soit due au hasard.



Résultats


Les deux groups sont statistiquement comparables en termes de caractéristique anthropométrique. Les sujets du groupe expérimental ont une entorse de la cheville se traduisant par rupture partiel du ligament collatéral externe ( Tableau 1 ).


Apr 23, 2017 | Posted by in PHYSICAL MEDICINE & REHABILITATION | Comments Off on The effect of 8-weeks proprioceptive exercise program in postural sway and isokinetic strength of ankle sprains of Tunisian athletes

Full access? Get Clinical Tree

Get Clinical Tree app for offline access