Chapter 8 Research in Natural Medicine
What Is Natural Medicine?
There have been a great many published reviews of natural medicine practices, especially of its substances and approach to diseases, including the present volume.1–3 Nevertheless, many of its practices have not borne the level of scrutiny of standard modern medicine. Some within CAM ranks have resisted the usual scientific evaluation as reductionistic and an inappropriate means to the understanding of healing.* This chapter addresses needs in the development of relevant original data in natural medicine.
Purpose of Research
Research tools such as descriptive statistics and hypothesis testing are epidemiologic techniques; they lead to generalizations about populations. They have limitations in clinical practice, in which the focus is on one patient at a time. Current biomedical research increasingly focuses on strategy developed from molecular (lately genetics and the “-omics”) and physical (surgical and prosthetic) models. In research practice, hypothesis testing is usually most sensitive to a selected outcome and most internally valid (able to answer the precise question it set for itself) when it is most reductionistic. The more discrete variables of chemistry and mechanics lend themselves to more reductionistic hypothesis testing. In turn, the validity of the reductionistic approach depends on the precision (narrowness) of the question. Natural medicine is ecologic and holistic in its orientation, with numerous broad analog inputs and outputs with what might appear to be intuitive discriminations. The common models in research that emphasize transferability, internal validity, replicability, and generalizability in molecular and physical systems may conflict with model validity when studying natural medicine systems.4 Model validity ensures that the study design reflects the structure and logic of the practices of interest. Thus, one might ask whether alternative medicine calls for alternative science. It may be so; some philosophers of science and mathematicians are working toward methods that may be better suited to the evaluation of natural medicine systems.5,6 Although the development of accepted research methods that incorporate more complex and subtle biomedical quanta are awaited, much can be done with the currently available biomedical research tools.
Methodological Problems and Strategies
What does replicability mean for a medicine that may offer individualized treatment to every patient? How does individualized treatment map onto an evaluative system in which outcomes typically refer to populations? Better tools are needed to understand and evaluate these practices, particularly informational tools that go beyond the more commonly used physiologic, psychological, pharmaceutical, and epidemiologic methods.5 Many accommodations within clinical study methodology can be made that will reduce the apparent contradictions of the different medical value systems. Research methods from other fields like psychology, ecology, and anthropology can also be used. When performing research studies in natural medicine that might lead to improved practice, issues that are different from or need more emphasis than those in conventional biomedicine will need to be addressed. This chapter touches on some of the methodological issues for clinical trials, observational studies, and basic science studies in natural medicine.
Clinical Trials
Properly performed clinical research in conventional medicine is a demanding discipline that encompasses study design; determination of sample size and population characteristics; ethics; clinical care; definition and sensitive measurement of diseases and outcomes; project management, recruitment, and participant adherence and retention; and data management and statistics, analysis, and interpretation. All of these are secondary to establishing the research questions—the purposes—of the trial which will differ, for example, in explanatory (development and discovery: Could this work in controlled circumstances? How?) versus pragmatic (application and policy: Does this work in everyday practice? Which treatment is better?) study.7 Different designs can be usefully applied in research approaches to different aspects of natural medicine practice. For any type of clinical trial of natural medicine, the following issues bear additional attention beyond those required for pharmaceutical trials:
2. Individualization of treatment: nosology and indications
3. Combination therapies: effect size and safety
4. Nonspecific healing effects
Standardization
The organized natural medical professions have variably definitive articulations of philosophy and clinical strategies. What constitutes a competent practitioner in a given discipline often remains uncertain,8 and many natural medicine approaches, like those of indigenous practices, are unlikely ever to be codified. Even with the licensed practices (e.g., naturopathic medicine, acupuncture, and chiropractic), health insurance coverage with regulation by practitioner-review panels is recent. It is only in the last two decades that coding systems for alternative practices have begun to describe the array of interventions available in the United States.9 The current emphasis on research in CAM practices calls for speeding up the process of standardization toward replicability.
Communication about natural medicine research issues can be problematic when using standard clinical practice and biomedical research metaphors. One way to understand the problem is to say that natural medicine’s critical practices lack articulation and operationalization of accepted and, within the respective practitioner groups, widely understood memes. Memes are collective concepts: ideas, behaviors, or skills that are transferred from one person to another by imitation and replicable on a population basis (see Richard Dawkins’ book The Selfish Gene, from 1976)9a. A meme, as a phrase, invokes meaning beyond those of the words themselves, such as in the principle vis medicatrix naturae (the healing power of nature). Dictionaries of memes may be needed for the collective concepts of natural medicine practice that may be identified as the practices are investigated. The development of memes through which to express the syncretic concepts of natural medicine and which may have broad applicability is one of the benefits of researching the practices.5 The dearth of articulation of natural medicine’s concepts accounts in part for its remarkable variation among practitioners. Its transfer from mentor to student may be imprecise or misinterpreted even before practitioner preferences and personalities are brought into play. This is not to say that the concepts of natural medicine practice are not reliably transmitted from mentor to student, only that they are not yet always articulated in ways that have been operationalized for clinical trials.
Standardization of natural remedies is becoming better understood. To perform a single-agent controlled trial of herbs in a specific disease, numerous choices should be made about the intervention. The Policy Announcement on the Quality of Natural Products of the National Institutes of Health (NIH) National Center for Complementary and Alternative Medicine (NCCAM) has brought some clarity to the botanical standards for NIH sponsored trials (http://www.nccam.nih.gov/research/policies/naturalproducts.htm). Studies should begin with verification of plant species used, growth and harvesting conditions, and the stability of purported active compounds. Selections should be made among plant parts, various crude extracts, or specific chemical constituents that may be concentrated in various ways and to varying degrees of purity. Crude fresh extracts, which traditional herbalists prefer, are highly susceptible to deterioration. In more sophisticated systems of botanical medicine preparation, a product is standardized to guarantee the minimum or maximum concentration of a number of ingredients for a given period, for example, EGb 761 (Schwabe GmbH, Karlsruhe, Germany), the Ginkgo biloba, which has been the most researched botanical and is standardized on four constituents. Standardizing on particular constituents has its challenges. Active ingredients in plants are often classes of molecules (e.g., polysaccharides, saponins, terpenes) that are difficult to distinguish in biological activity. Different compounds in a single species may have similar, possibly complementary effects, such as the polysaccharides and isobutyramides in Echinacea species. During in vitro assays, which guide fractionation of the crude extract toward a single active molecule, it is not uncommon for activity to increase but then diminish as greater purity of an identified molecular species is reached, as was the case of the terpenes of Andrographis paniculata (AndroVir, Paracelsian, Inc., Ithaca, NY) in cell signaling. A few botanicals are standardized on an in vitro biological activity. The industry standard, porously applied, is chemical standardization on actives and certified Good Manufacturing Practices.
“Body, mind, spirit” is a leitmotif of natural medicine. The interplay of psychodynamic and spiritual phenomena and physical health are only partially encompassed by the behaviorist approach of most health psychology research, but this has been greatly augmented by recent studies in “mind–body” medicine with numerous reviews in various specialties in publication. Advances have been made in the neuroscience of expectancies in the placebo effect, with the size of the placebo effect recognized as different in different conditions, but despite the ubiquitous use of placebo in practice,10 operationalization and manipulation of placebo effects remain fraught methodologically and ethically. Placebo use in medical encounters continues to be explored, but raises more questions than answers;11 however, hope remains for advances in future studies.12
While they represent a small proportion of all health studies, questions about spirituality remain of investigative interest, although with few authoritative and widely used research methods. Operationalization of spiritual experience is likely to be idiosyncratic or culture specific. The 4th edition of the Diagnostic and Statistical Manual (DSM-IV, 1995) reinstated the possibility of a religious or spiritual problem. Definitions of spirituality in the medical literature may refer to hope and meaning or to a personal relationship with God, serenity, or connectedness, all perhaps related to states of the patient’s consciousness.13,14 A number of thinkers continue to bemoan the lack of definition in the area.15 Although efforts to present cogent, broadly acceptable definitions have been made, they have not been successful.16,17 Better approaches to specifying spiritual interventions may be needed before they will be accessible to replicable research. Recent reviews of the health effects of intercessory prayer, an observable phenomenon, have been equivocal.18
Individualization of Treatment
Some natural medicine concepts may no longer have or may never have had a biomedical equivalent. An example is the concept of “constitution” used in naturopathy, homeopathy, and Asian medical systems. This is a patient’s given biological potential, tendencies, and patterns of long-standing psychophysical strengths and weaknesses that are genetically and embryologically determined. Others are the “biological terrain” (the background physical health and individual context for the immediate medical problem) and the “vital force” (the motive plan or spirit animating mind and body expressed as physiologic and psychological functionality and adaptability). Biomedical equivalents exist in some parameters for system control concepts; however, they are therapeutically exploited more thoroughly by holistic practitioners. Such concepts are balance (as in the immune system, among microbial symbionts, hormones, and neurotransmitters); deficiency (not just nutritional but organ deficiencies, such as hypochlorhydria and hypothyroidism); functional reserves; endogenous and exogenous toxicities; and dysmetabolisms (e.g., syndrome X). An important concept is that a disease syndrome may be an attempt by the body to adapt to ecologic stress and so should not be unnecessarily suppressed. This is of interest not only because it is an independent variable (baseline factor), but also because it influences the measurement of the dependent variable (outcome).