Dynamic fascial release – manual and tool assisted vibrational therapies

Chapter 7.13


Dynamic fascial release – manual and tool assisted vibrational therapies




Introduction


In this chapter, fascia will be considered to represent the dissectible anatomic component, and also the continuum of mesodermally derived connective tissue. Combined with the neural system, this becomes a functional neuromyofascial syncytium in which the connective tissue component serves the role of form integrity, force distribution, and reactivity. The continuously connected universal distribution of connective tissue from the intracellular microtubules to the epidermis has been described elsewhere (Chen & Ingber 2007). Structurally, it reflects a fractal hierarchy in which each level is distinctively functional. The recent identification of alpha smooth muscle actin in fascia (Schleip et al. 2006) reinforces the concept of reactivity.


Historically, vibration had been used in light therapy, music and tone therapies, homeopathy, and radionics, as well as conventional radiation therapy (Abrams 1922; Kruser 1937; Vithoulkas 1980). This chapter focuses on therapies using vibration in the range of 1–100 Hz. It will provide a conceptual and historic framework to this topic, then describe in some detail one manual and one machine-assisted form of vibratory release with which the author is most intimately familiar. The author works and teaches in the context of osteopathic medicine and the manual approaches associated with that discipline.



History of manual and mechanical work involving fascia


The literature of early American manual medicine includes these words from Andrew Still, founder of osteopathy:



Wernham, a student of J.M. Littlejohn (who introduced osteopathic education to England), attests that rhythm was part of osteopathy since its inception (Wernham 2003). This expresses itself in his popularized General Osteopathic Treatment (GOT) and in derived Harmonic Technique (Lederman 1997; Hartman 2001). Both serve as general treatments. In the United States, T.J. Ruddy used patient-activated rhythmic motions to induce localized relaxation. This became the basis for Mitchell’s Muscle Energy Technique and Vibratory Isolytic Technique (Mitchell 1998). These conceptualizations targeted specific local somatic dysfunctions.


The machine age, the late nineteenth century, produced debate regarding the use of manually and mechanically applied vibration, and its relevance to physiologic wellness. A perspective from that time can be obtained by comparing the work of A. Snow M.D. (Snow 1912) and articles in the Journal of Osteopathy from the same period contesting this approach (Bower 1904; Sullivan 1904) see Fig. 7.13.1. Robert Fulford reintroduced mechanical vibration into the context of osteopathic bodywork in the 1950s, using a percussion vibrator treatment (Comeaux 2002). Facilitated Oscillatory Release emerged from this as a manual application of oscillation with specific localized intent (Comeaux 2008). Manual vibration is also used in Trager work and the Vibromuscular Harmonization Technique of Roddick and Frere’s Methode Rhythmique de Harmonization.



In the area of sports fitness training, whole-body mechanical vibration has emerged as a popular means of improving muscle tone and increasing lean body mass, using a variety of vibrating platforms. Manufacturers generally cite the effectiveness through generalized muscle contraction involving tonic vibratory reflex. Obviously, there are a variety of issues in selecting this therapy (Cardinale & Wakeling 2005), including variation in effect with different training schedules, inconsistent demonstration of strength/power with use of vibration, as well as lack of clarity as to optimal amplitude to engage natural dampening in the musculature. Additionally, tonic vibratory reflex involves an observed physiologic set of responses that are not easily characterized; in other words, various researchers have described different aspects of the phenomenon with varied results, reflecting that the processes are not yet completely understood. Tonic vibratory reflex is discussed later in this chapter in the context of the population coding model of neuromuscular coordination.


A contemporary list of proposed physiological mechanisms for the effectiveness of vibration is summarized in Table 7.13.1.



Table 7.13.1


Contemporary hypothetical explanations of effectiveness of vibration
























Hypothetical mechanism Rationale and reference
Cumulative creep through successive cyclic loading of collagen fibers Mechanical characteristics of collagen and the dynamic reciprocal functional and metabolic role in repetitive motion with muscle (Solomonow 2009)
Resetting alpha-gamma coordination in muscle activation changing tension patterns distributed by fascia An extension of the muscle energy model (Mitchell 1998)
Phase coherence of quantum state of fascia as a tensegrity matrix Application of the tensegrity structural model to the fascial organization of biologic systems. The fibrin matrix distributes force underlying structure and function (Chen & Ingber 2007).Fibrous network as a communication grid for coordinating encoded information within the fascial network; involves quantum vibrational energetic phase coherence (harmonics) for health (Ho 2008)
Entrainment of endogenous physiologic oscillators Population coding model of neurobiologic function underlying recurrent activity (including depolariazation/repolarization cycle of neurons), rhythm of coherent depolarization of cells depicts a functional state. Phasic state changes entrain changes in rhythmic function of a population, resulting in functional change (Windhorst 1996; Zedka 1997; Farmer 1998)
Application of tonic vibratory reflex Another route to altering tone through muscle spindle reflexes (Comeaux 2008)
Metaphysical Descriptions using the term ‘energy’ as the term ‘ether’ was used in the twentieth century await empiric correlation (Comeaux 2002)


Hebb’s hypothesis, harmonic function and oscillation


Fascia either directly or indirectly participates in the balance of tensions coordinated by the neural system. Population coding is a concept which complements the system of coordinative reflexes traditionally viewed as a primary means of neural coordination.


Population coding is a concept derived from Hebb’s attempts in neurophysiology to reconcile the spatial limitation with the extensive functions of the brain (Spatz 1996). He proposed an encoding process, since the skull could not contain enough space for task-dedicated tissue. In essence, it emphasizes that neuronal coordination involves patterns of rhythmic activity, not just dedicated cells and pathways. Individual neurons could participate synchronously in several operations. Functionality would result from phasic relationships and patterns of depolarization in addition to sheer connectivity. Despite limitations to the theory, the theme of rhythmic depolarization is a defensible model of neural coordination applicable on a peripheral as well as central level. Neural coordination is rhythmic and the controlling feature is phase synchrony across and between cell populations.


Both reflex and voluntary movements have been shown to demonstrate periodic rather than constant depolarization. Gross voluntary motion, muscle tone, and posture (including the cerebellar component) are composites of cyclic depolarization rather than a linear process (Windhorst 1996; Zedka & Prochazka 1997; Farmer 1998). This is similar to the experience of appreciating a constant object on a video screen which actually represents a signal refreshed at a rate of 24 cycles per second. Muscle tone, with its adaptive tendon and epimesial/perimesial (connective tissue) tension, is a function of rhythmic activity. This tension from postural movement has a reciprocal relationship with fascial tension. The applicable point to bodywork is that neuromuscular activity, both afferent and efferent, is rhythmic. Physical tone of structural tissue, including that occurring after trauma or strain, is determined by states of phasic depolarization.



Rhythmic reflexes – Tonic Vibratory Reflex (TVR) and related effects



TVR background


Tonic Vibratory Reflex (TVR) is a complex phenomenon that was originally described by Hagbarth. It involves the contraction of muscle in response to vibration in the range 0–100 Hz (Hagbarth & Eklund 1966). Martin and Park note a frequency-dependent excitation–contraction coupling leading to muscle fatigue (Martin & Park 1997). Many others show altered performance, notably undershoot or underextension of blinded voluntary movement, a kinesthetic illusion (Cody et al. 1990). Changes in muscle spindle activity betray involvement of discoordination of gamma-alpha motor neuron coordination controlling muscle tone (Burke et al. 1976; Vallbo & Al-Falahe 1990). In composite, these effects describe TVR as a discoordination of proprioception. But proprioception is a coordination of vestibular, ocular, cerebellar, cortical and alpha-gamma reflex effects. As a result, tonic vibratory reflex involves a complex of interactions. Curiously, locally applied vibrations cause reflexively coordinated movements of other body parts (Rossi et al. 1985; Zedka & Prochazka 1997; Han & Lennerstrand 1999). Additionally, spino-cerebellar disease or degeneration diminishes this effect (Abbruzzese et al. 1982).

Only gold members can continue reading. Log In or Register to continue

Stay updated, free articles. Join our Telegram channel

Aug 24, 2016 | Posted by in ORTHOPEDIC | Comments Off on Dynamic fascial release – manual and tool assisted vibrational therapies

Full access? Get Clinical Tree

Get Clinical Tree app for offline access