Angina

Chapter 145 Angina








image Therapeutic Considerations


Angina is a serious condition that requires careful treatment and monitoring. In the severe case as well as in the initial stages of mild to moderate angina, prescription medications may be necessary. Eventually the condition should be controlled with the help of natural measures. If there is significant blockage of the coronary artery, intravenous ethylenediaminetetraacetic acid (EDTA) chelation therapy, angioplasty, or coronary artery bypass may be appropriate.


From the perspective of natural medicine, there are two primary therapeutic goals in the treatment of angina: improving energy metabolism within the heart and improving blood supply to the heart. These goals are interrelated, as an increased blood flow means improved energy metabolism and vice versa.


The heart uses fats as its major metabolic fuel. It converts free fatty acids to energy in much the same way as an automobile uses gasoline. Defects in the utilization of fats by the heart greatly increase the risk of atherosclerosis, heart attacks, and anginal pains. Specifically, impaired utilization of fatty acids by the heart results in the accumulation of high concentrations of fatty acids within the heart muscle. This makes the heart extremely susceptible to cellular damage, which ultimately leads to a heart attack.


Carnitine, pantethine, and coenzyme Q10 (CoQ10) are essential compounds in normal fat and energy metabolism and are of extreme benefit to sufferers of angina. These nutrients prevent the accumulation of fatty acids within the heart muscle by improving the conversion of fatty acids and other compounds into energy.



Nutritional Supplements for Angina


The use of antioxidant supplementation in patients with angina is important. In an analysis of normal controls and patients with either stable or unstable angina, the plasma level of antioxidants has been shown to be a more sensitive predictor of unstable angina than the severity of atherosclerosis.2,3 One group of researchers concluded: “These data are consistent with the hypothesis that the beneficial effects of antioxidants in coronary artery disease (CAD) may result, in part, by an influence on lesion activity rather than a reduction in the overall extent of fixed disease.”2


Antioxidant nutrients are also important in preventing nitrate tolerance. Oral nitrates are widely used in the conventional treatment of angina, but their continuous administration can result in the rapid development of tolerance. Experimental findings indicate that nitrate tolerance is associated with increased vascular production of superoxide. The superoxide anions generated quickly degrade the nitric oxide formed from the administration of nitroglycerin and result in lower levels of cyclic guanosine monophosphate (an important intracellular regulator that promotes vasorelaxation). Because vitamin C is the main aqueous-phase antioxidant and free radical scavenger of superoxide and vitamin E is the main lipid-phase antioxidant, their importance in preventing nitrate tolerance is obvious. Clinical trials have upheld this connection, showing that high-dose vitamins C and E supplementation can prevent nitrate tolerance.4,5



Carnitine


Carnitine, a vitamin-like compound, stimulates the breakdown of long-chain fatty acids by the energy-producing units in cells—the mitochondria. Carnitine is essential in the transport of fatty acids into the mitochondria. A deficiency in carnitine results in a decrease in fatty acid concentrations in the mitochondria and reduced energy production.


Normal heart function is critically dependent on adequate concentrations of carnitine. Although the normal heart stores more carnitine than it needs, if the heart does not have a good supply of oxygen, carnitine levels quickly decrease. This leads to decreased energy production in the heart and increased risk for angina and heart disease. Because angina patients have a decreased supply of oxygen, carnitine supplementation makes good sense.


Several clinical trials have demonstrated that carnitine improves angina and heart disease.610 Supplementation with carnitine normalizes heart carnitine levels and allows the heart muscle to use its limited oxygen supply more efficiently. This translates to an improvement in cases of angina. Improvements have been noted in exercise tolerance and heart function. The results indicate that carnitine is an effective alternative to drugs in cases of angina.


In one study of patients with stable angina, oral administration of 900 mg of L-carnitine increased mean exercise time and the time necessary for abnormalities to occur on a stress test (6.4 minutes in the placebo group compared with 8.8 minutes in the carnitine-treated group).10


These results indicate that carnitine may be an effective alternative to other antianginal agents such as beta blockers, calcium channel antagonists, and nitrates, especially in patients with chronic stable angina pectoris.


Carnitine, by improving fatty acid utilization and energy production in the heart muscle, may also prevent the production of toxic fatty acid metabolites. These compounds are extremely deleterious as they activate various phospholipases and disrupt cellular membrane structures. The changes in the properties of cardiac cell membranes induced by fatty acid metabolites are thought to contribute to impaired heart muscle contractility and compliance, increased susceptibility to irregular beats, and the eventual death of heart tissue. Supplemental carnitine increases heart carnitine levels and prevents the production of toxic fatty acid metabolites. This has been demonstrated clinically, where the early administration of L-carnitine (40 mg/kg per day) in patients having heart attacks was found to considerably reduce heart damage.11




Coenzyme Q10


CoQ10, also known as ubiquinone, is an essential component of the mitochondria, where it plays a major role in energy production. Like carnitine and pantethine, CoQ10 can be synthesized within the body. Nonetheless, deficiency states have been reported. Deficiency can be a result of impaired CoQ10 synthesis due to nutritional deficiencies, a genetic or acquired defect in CoQ10 synthesis, or increased tissue needs.16


Cardiovascular diseases—including angina, hypertension, mitral valve prolapse, and congestive heart failure—are examples of diseases that require increased tissue levels of CoQ10.16 In addition, many of the elderly may have increased CoQ10 requirements: the decline of CoQ10 levels that occurs with age may be partly responsible for the age-related deterioration of the immune system.


CoQ10 deficiency is common in individuals with heart disease. Heart tissue biopsies in patients with various heart diseases show a CoQ10 deficiency in 50% to 75% of cases.16 One of the most metabolically active tissues in the body, the heart may be unusually susceptible to the effects of CoQ10 deficiency. Accordingly, CoQ10 has shown great promise in the treatment of heart disease.


In one study, 12 patients with stable angina pectoris were treated with CoQ10 (150 mg/day for 4 weeks) in a double-blind crossover trial.17 Compared with placebo, CoQ10 reduced the frequency of anginal attacks by 53%. In addition, there was a significant increase in treadmill exercise tolerance (time to onset of chest pain and time to development of ECG abnormalities) during CoQ10 treatment. The results of this study and others suggest that CoQ10 is a safe and effective treatment for angina pectoris.


Carnitine, pantethine, and CoQ10 should be considered in all heart disorders, not just angina.

Stay updated, free articles. Join our Telegram channel

Sep 12, 2016 | Posted by in MANUAL THERAPIST | Comments Off on Angina

Full access? Get Clinical Tree

Get Clinical Tree app for offline access