CHAPTER 3
The Effects of
Manipulation on Fascia
Introduction
Fascia is an uninterrupted network throughout the body which has the ability to adjust its elasticity and consistency under tension (Findley et al., 2012). There are various forms of manual therapies that have been developed to work on the fascia for therapeutic purposes. Although these therapies have considerable variation in their techniques, they can be broadly divided into two major groups: myofascial release (e.g. soft-tissue manipulation) and manipulative techniques (e.g. high-velocity, low-amplitude thrust) (Simmonds, Miller and Gemmell, 2012). In general, these techniques are used to treat a variety of musculoskeletal as well as visceral problems, including sprains, tendonitis, peripheral neuropathy, neck pain syndromes, gastritis, abdominal pain, constipation, menstrual cramps and irritable bowel syndrome (Stecco and Stecco, 2010).
Scientific research on these techniques continues; so far, a number of positive clinical findings have been reported (Pedrelli, Stecco and Day, 2009; Day, Stecco and Stecco, 2009; Oulianova, 2011; Harper, Steinbeck and Aron, 2016). However, although the volume of research on these techniques has increased significantly in recent years, little is yet understood about their effects on fascia. Even though many authors have claimed to change the density, tonus, viscosity or arrangement of fascia through the application of manual techniques (Cantu and Grodin, 1992; Ward, 1993; Paoletti, 2002), their proposed explanations predominantly allude to the fascia’s ability to adapt to physical stress.
Given the lack of firm theories based on scientific evidence, this chapter is written to review the current theories of the effects of manipulative therapies on fascia. In addition, current understandings about the apparently confounding fascia and its role in human body are also discussed.
What is Fascia?
Fascia is the largest component of white fibrous tissue that extends over the whole body just below the skin. It is a continuous sheet – composed of connective tissue – enveloping and yet at the same time compartmentalising all parts of the body (O’Connell, 2003). It forms an extensive, membranous continuum, a 3D whole-body matrix of structural support, and is an interconnected network of fibrous collagenous tissues, which moves, connects and senses all of the body’s vital organs, nerve fibres, blood vessels, muscles and bones (Thomas and Robet, 2009).
Fascia provides ongoing physiological support for the body’s metabolically active systems composed of specialised cells and tissues (McGechie, 2010). It has the function of connecting, communicating and coordinating all parts of the body in its entirety (Langevin, 2006). The structural integrity of fascia is also essential, as it assists in response to mechanical stress and the maintenance of posture and locomotion (O’Connell, 2003; Stecco and Stecco, 2010). In summary, the fascia supports the body in a number of ways, such as by increasing joint stability, facilitating movement, assisting in the repair of tissue damage, protecting against infection and contributing to haemodynamic and biochemical processes (LeMoon, 2008).
Fascia has three layers: superficial, deep (muscle) and subserous (visceral).
Table 3.1 Different layers of fascia | |
Name | Characteristics |
Superficial fascia | •a web of collagen with a membranous appearance •forms a protective covering all over the body •composed of the subcutaneous connective tissue containing elastin, collagen as well as some fat tissue •absent in the face, palms of the hand and soles of the feet |
Deep fascia | •a layer of fibrous connective tissue that sheaths all muscles •devoid of fat tissues and forms compartments for cavities, organs and structures •envelops all bones, including various organs and glands, and becomes specialised in muscles and nerves |
Visceral fascia | •a thin, fibrous membrane composed mostly of reticular fibres •covers, supports and lubricates organs •wraps muscle in layers of connective tissue membranes |
Sources: O’Connell (2003); Lancerotto et al. (2011); Findley et al. (2012) |
Effects of Manipulative Therapies on Fascia
Mechanical Effects
Manipulative therapies have long been hypothesised to produce mechanical effects on fascia (Paoletti, 2002; Ward, 1993; Cantu and Grodin, 1992). These therapies are thought to improve balance, motion and posture by changing the mechanical properties of the fascia, such as density, tonus, arrangement and viscosity (Smith, 2005; Stanborough, 2004; DellaGrotte et al., 2008). However, most of these theories are mainly based on the fascia’s ability to adapt to physical stresses, and its role in transmitting mechanical forces between muscles (Huijing, 2009).
Fascia tightens and loses its flexibility due to acute inflammation; it may also shorten because of long-term postural positioning, which hinders its full excursion. When fascial tightness or shortness occurs, stretching of fascia might result pain at distant sensitive areas of the body – for example, blood vessels and nerves (Findley et al., 2012). Osteopathic physicians and manual therapists claim that once fascial tightness is released through appropriate application of a manipulative technique, pressure is eased from these sensitive areas and blood circulation returns to normal range (Walton, 2008; Findley et al., 2012). Some manual therapists have also reported palpable tissue release after applying a soft-tissue manipulation to dense fascial areas (Juhan, 1987; Ward, 1993; Stecco, 2004). These palpable sensations of tissue release have been attributed as a breaching of fascial cross-links, a transition from viscous gel state to less viscous sol state in the extracellular matrix, and other passive viscoelastic changes of fasciae (Stanborough, 2004; Juhan, 1987; Stecco, 2004).
However, this explanation of palpable viscoelastic changes in human fasciae has been highly controversial, because it is not yet known whether the applied mechanical force and duration of a given manipulative technique can be sufficient to cause such an effect. Although some authors (Sucher et al