Joint protection and fatigue management

Chapter 10 Joint protection and fatigue management



Alison Hammond, PhD MSc BSc(Hons) DipCOT FCOT, Centre for Health, Sport and Rehabilitation Research, University of Salford, Greater Manchester and Royal Derby Hospital, Derby Hospitals NHS Foundation Trust, Derby, UK






INTRODUCTION


Joint protection and fatigue management address the priority concerns of people with arthritis: pain, fatigue and hand and finger function (Heiburg & Kvien 2002, Hewlett et al 2005). Joint protection underlies all rehabilitation of people whose joints are at risk from arthritis (Cordery & Rocchi 1998), yet fatigue management is often inadequately addressed (Hewlett et al 2005). To be effective, both require people with arthritis changing habits and routines. Teaching facts can be done quickly but enabling long-term behavioural change requires greater input. This chapter discusses what joint protection and fatigue management strategies are, practical applications, evidence for effectiveness, how to help people change and outcome measures.



JOINT PROTECTION


Joint protection developed from understanding pathophysiology of joint diseases, joint biomechanics, forces applied during activity and how these contribute to the development of deformity (Brattstrom 1987, Chamberlain et al 1984, Cordery 1965, Cordery & Rocchi 1998, Melvin 1989). The aims of joint protection in inflammatory arthritis are to:







For people with osteoarthritis (OA) the aims are to:





Joint protection is an active coping strategy to improve daily tasks and role performance helping reduce frustration arising from difficulties with these, enhance perceptions of control and improve psychological status (Hammond et al 1999). Much of joint protection literature focuses on hand problems in rheumatoid arthritis (RA), so this is explored in detail in this chapter but strategies are similarly applicable in other conditions and for other joints.



PATHOPHYSIOLOGY OF HAND DEFORMITIES AND BIOMECHANICAL BASIS OF JOINT PROTECTION


Considering why deformities develop with RA helps in understanding how joint protection may contribute to preserving joint integrity. Deformities develop due to a combination of persistent synovitis disrupting joint structures and both normal and abnormal forces passing over joints (Adams et al 2005, Flatt 1995). In the longer-term, disruptions to bony architecture from erosions and osteophytes can further alter joint mechanics at any joint.






JOINT PROTECTION AND THE HANDS


Anatomical disruptions, combined with normal daily hand use patterns, can promote deformity. Power grip requires MCP ulnar deviation, especially in the 4th and 5th fingers. During lifting, external pressures in a volar or longitudinal direction increase strain on weakened wrist ligaments. Strong pinch grips increase intrinsic muscle pull promoting imbalance at the IP joints. Hand joint protection in RA thus focuses on changing movement patterns to limit: strong grips, twisting movements and sustained grips at the MCPs (reducing MCP ulnar forces); lifting heavy objects and sustained wrist radial positioning (reducing wrist volar and radial forces); and tight, prolonged key, tripod and pinch grips (reducing volar and ulnar forces on the MCP and IP joints).


In the early stages, many with RA are all too aware of hand function problems: dropping items, weaker grip, reduced dexterity and frustration from activities taking longer and being more painful. However, early signs of RA can be subtle (see Fig. 10.1). Whilst swelling may be noticeable, many do not notice a more prominent ulnar styloid, slight wrist radial deviation and 5th MCP ulnar deviation, early correctable finger deformities, nor gradual loss of movement. In early RA average losses are 20° wrist extension, 30° wrist flexion, 15° MCP flexion and only 40% of normal power and pinch grip strength (Hammond et al 2000). A third can develop hand deformities by two years (Eberhardt et al 1990). This suggests joint protection and hand exercises should be provided early and effectively to limit decline (Fig. 16.4 Ch 16).




JOINT PROTECTION PRINCIPLES


Principles taught are shown in Box 10.1 and in Chapter 16 (Box 16.4). Focus on priority messages in plain English. For example, for the hands:







Joint protection principles are reviewed in Palmer and Simons (1991).



JOINT PROTECTION STRATEGIES


Joint protection is the application of ergonomics to everyday activities, work and leisure. Many people find ways of reducing pain and fatigue in daily activities through trial and error, but this takes time. Joint protection and energy conservation education should apply a systematic approach to changing habits, finding new solutions and speeding up change. Strategies include:










FATIGUE MANAGEMENT


Fatigue increases pain, cognitive disturbance (e.g. reduced concentration) and psychological effects (e.g. increased stress, low mood). There are many possible causes (see Box 10.2) and multiple solutions are needed. Helping people identify potential causes helps them prioritise changes. Practical strategies include:


Jul 3, 2016 | Posted by in RHEUMATOLOGY | Comments Off on Joint protection and fatigue management

Full access? Get Clinical Tree

Get Clinical Tree app for offline access