to track reference trajectory , where operator
is defined by (4.1). This objective assumes that a trajectory
is available. In the rehabilitation domain this is appropriate if the task is defined and explicitly presented to the patient as it was in Chap. 5. However, this is not possible when training more natural, everyday activities such as eating, washing or manipulating objects. To address this, the problem definition is now extended to encompass fully functional tasks.
6.1 Extended Task Representation

Fig. 6.1
Combined feedback and ILC control structure
To expand the task definition to capture the needs of human motor control, we define
distinct points in [0, T] which are deemed important to the task completion. These break the task down into S intervals in which one or more joints may be required to perform a synchronized movement. For example, time interval
may correspond to the hand palm pushing a drawer along its runners, or the fingers holding a cup during a pouring movement. If
is specified then the interval is an isolated time point, and may for example represent the time where the index finger makes contact with a light switch.

![$$[t_{j-1}, t_j]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq6.gif)

Given joint angle signal
defined over [0, T], we extract the single or linear combination of joints involved in any coordinated action by using the projection
![$$\begin{aligned} P&: \mathscr {L}_2^{n_p} [0,T] \rightarrow \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}] : \varvec{\varPhi }_{\mathscr {P}} \mapsto \left[ \begin{array}{c} (P \varvec{\varPhi }_{\mathscr {P}})_1 \\ \vdots \\ (P \varvec{\varPhi }_{\mathscr {P}})_S \end{array} \right] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ1.gif)
with each component,
, defined by
![$$\begin{aligned} ((P \varvec{\varPhi }_{\mathscr {P}})_j )(t) = P_j \varvec{\varPhi }_{\mathscr {P}}(t), \quad \quad t \in [t_{j-1}, t_j], \quad j = 1, 2, \ldots , S, \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ2.gif)
where
is a
matrix of full row rank specifying the joint angles involved in the gesture or movement stipulated over time interval
.

![$$\begin{aligned} P&: \mathscr {L}_2^{n_p} [0,T] \rightarrow \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}] : \varvec{\varPhi }_{\mathscr {P}} \mapsto \left[ \begin{array}{c} (P \varvec{\varPhi }_{\mathscr {P}})_1 \\ \vdots \\ (P \varvec{\varPhi }_{\mathscr {P}})_S \end{array} \right] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ1.gif)
(6.1)
![$$(P \varvec{\varPhi }_{\mathscr {P}})_j: \mathscr {L}_2^{n_p}[0,T] \rightarrow \mathscr {L}_2^{p_j}[t_{j-1}, t_j]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq9.gif)
![$$\begin{aligned} ((P \varvec{\varPhi }_{\mathscr {P}})_j )(t) = P_j \varvec{\varPhi }_{\mathscr {P}}(t), \quad \quad t \in [t_{j-1}, t_j], \quad j = 1, 2, \ldots , S, \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ2.gif)
(6.2)


![$$[t_{j-1}, t_j]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq12.gif)
For ease of notation, the projected output
is termed the “extended output” and denoted by
. We can also incorporate the projection into the system operator to yield the extended system operator
defined by

Using this extended task representation allows us to replace the ILC tracking problem (4.3) by the more general form

where the extended reference trajectory and extended error are respectively
![$$\begin{aligned} \hat{\varvec{\varPhi }}_{\mathscr {P}}^e = \left[ \begin{array}{c} \hat{\varvec{\varPhi }}^{p_1}_{\mathscr {P}} \\ \vdots \\ \hat{\varvec{\varPhi }}^{p_S}_{\mathscr {P}} \end{array} \right] , \quad \varvec{e}_{\mathscr {P}}^e = \left[ \begin{array}{c} \hat{\varvec{\varPhi }}^{p_1}_{\mathscr {P}} - (P G_{\mathscr {P}})_1 (\hat{\varvec{\varPhi }} + \varvec{v}) \\ \vdots \\ \hat{\varvec{\varPhi }}^{p_S}_{\mathscr {P}} - (P G_{\mathscr {P}})_S (\hat{\varvec{\varPhi }} + \varvec{v}) \end{array} \right] = \hat{\varvec{\varPhi }}_{\mathscr {P}}^e - G_{\mathscr {P}}^e (\hat{\varvec{\varPhi }} + \varvec{v}). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ5.gif)
Here
contains the reference trajectories/points that must be followed at time points
or over intervals
. Note that the extended reference can be represented as the projection of a “virtual reference”,
, denoted by
, however
is not required in the control strategy. If the designer chooses
,
,
, and
then (6.4) collapses to the standard form (4.3).

![$$\varvec{\varPhi }_{\mathscr {P}}^e \in \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq14.gif)
![$$G_{\mathscr {P}}^e : \mathscr {L}_2^{p} [0,T] \rightarrow \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq15.gif)

(6.3)

(6.4)
![$$\begin{aligned} \hat{\varvec{\varPhi }}_{\mathscr {P}}^e = \left[ \begin{array}{c} \hat{\varvec{\varPhi }}^{p_1}_{\mathscr {P}} \\ \vdots \\ \hat{\varvec{\varPhi }}^{p_S}_{\mathscr {P}} \end{array} \right] , \quad \varvec{e}_{\mathscr {P}}^e = \left[ \begin{array}{c} \hat{\varvec{\varPhi }}^{p_1}_{\mathscr {P}} - (P G_{\mathscr {P}})_1 (\hat{\varvec{\varPhi }} + \varvec{v}) \\ \vdots \\ \hat{\varvec{\varPhi }}^{p_S}_{\mathscr {P}} - (P G_{\mathscr {P}})_S (\hat{\varvec{\varPhi }} + \varvec{v}) \end{array} \right] = \hat{\varvec{\varPhi }}_{\mathscr {P}}^e - G_{\mathscr {P}}^e (\hat{\varvec{\varPhi }} + \varvec{v}). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ5.gif)
(6.5)


![$$[{t}_{j-1}, {t}_j]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq18.gif)







6.2 Reduced Stimulation and Joint Subspaces
To reduce the number of degrees of freedom in problem (6.4) we can mimic the natural strategy of human motor control which involves a single neural command signal controlling multiple muscles. Each group of muscles working together is called a synergy, and the same muscle can potentially be employed within multiple synergies. To do this we introduce a set of
neural signals, denoted
. The mapping between
and the m muscle stimulation signals
, can be represented at time t by
. Here
is a
matrix with full column rank, with the jth column defining which muscles make up the jth synergy. The map between neural and muscle stimulation signals is therefore defined by
, with
![$$\begin{aligned} X : \mathscr {L}_2^{q}[0,T] \rightarrow \mathscr {X}[0,T] : \varvec{x} \mapsto \varvec{u}, \; \varvec{u}(t) = \bar{X} \varvec{x}(t). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ6.gif)
Here
is that subset of stimulation space
which is achievable given the specified set of q synergistic muscle combinations, and is defined by
![$$\begin{aligned} \mathscr {X}[0,T] := \left\{ \varvec{u} = X \varvec{x}, \; \varvec{x} \in \mathscr {L}_2^{q}[0,T] \right\} \subset \mathscr {L}_2^{m}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ7.gif)
The subspace
is convex: to see this let
,
, then
,
then
. Since
it follows from (6.7) that
.

![$$\varvec{x} \in \mathscr {L}_2^{q}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq27.gif)

![$$\varvec{u} \in \mathscr {L}_2^{m}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq29.gif)




![$$\begin{aligned} X : \mathscr {L}_2^{q}[0,T] \rightarrow \mathscr {X}[0,T] : \varvec{x} \mapsto \varvec{u}, \; \varvec{u}(t) = \bar{X} \varvec{x}(t). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ6.gif)
(6.6)
![$$\mathscr {X}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq34.gif)
![$$\mathscr {L}_2^{m}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq35.gif)
![$$\begin{aligned} \mathscr {X}[0,T] := \left\{ \varvec{u} = X \varvec{x}, \; \varvec{x} \in \mathscr {L}_2^{q}[0,T] \right\} \subset \mathscr {L}_2^{m}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ7.gif)
(6.7)
![$$\mathscr {X}[0,T] $$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq36.gif)




![$$\tilde{\varvec{x}}(t) + a (\tilde{\varvec{y}}(t) - \tilde{\varvec{x}}(t)) = X ( \varvec{x}(t) + a (\varvec{y}(t) - \varvec{x}(t)) ), \; a = [0,1]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq41.gif)
![$$\varvec{x} + a (\varvec{y} - \varvec{x}) \in \mathscr {L}_2^{q}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq42.gif)
![$$\tilde{\varvec{x}} + a (\tilde{\varvec{y}} - \tilde{\varvec{x}}) \in \mathscr {X}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq43.gif)
Operator X restricts the stimulation signal
to belong to a subspace
of
. However, we can also reduce the degree of freedom of control problem (6.4) by restricting the joint demand signal,
, generated by ILC to belong to a suitable subspace of
. To do this we introduce a set of q signals which represent synergies in joint space, and define the mapping between
and the achievable subset of joint space by
![$$\begin{aligned} W : \mathscr {L}_2^{q}[0,T] \rightarrow \mathscr {W}[0,T] : \varvec{r} \mapsto \varvec{v}, \; \varvec{v}(t) = \bar{W} \varvec{r}(t). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ8.gif)
where
matrix W has full column rank. The corresponding joint subspace is
![$$\begin{aligned} \mathscr {W}[0,T] := \left\{ \varvec{v} = W \varvec{r}, \; \varvec{r} \in \mathscr {L}_2^{q}[0,T] \right\} \subset \mathscr {L}_2^{p}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ9.gif)
Embedding these subspaces into control problem (6.4) gives rise to:

![$$\mathscr {X}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq45.gif)
![$$\mathscr {L}_2^{m}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq46.gif)

![$$\mathscr {L}_2^{p}[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq48.gif)
![$$\mathscr {L}^q_2[0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq49.gif)
![$$\begin{aligned} W : \mathscr {L}_2^{q}[0,T] \rightarrow \mathscr {W}[0,T] : \varvec{r} \mapsto \varvec{v}, \; \varvec{v}(t) = \bar{W} \varvec{r}(t). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ8.gif)
(6.8)

![$$\begin{aligned} \mathscr {W}[0,T] := \left\{ \varvec{v} = W \varvec{r}, \; \varvec{r} \in \mathscr {L}_2^{q}[0,T] \right\} \subset \mathscr {L}_2^{p}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ9.gif)
(6.9)
Definition 6.1
6.3 Extended ILC Framework
Theorem 6.1
Consider the ILC update sequence
![$$\begin{aligned} \varvec{v}_{k+1}&= \varvec{v}_k + W L_k ( \varvec{e}_{k} )^e_{\mathscr {P}}, \quad \quad k = 0,1,\ldots , \quad \varvec{v}_0 \in \mathscr {W}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ13.gif)
If learning operator
satisfies

where the operator norm is induced from the inner product
, then

and, for
chosen sufficiently close to
, the ILC update converges to
![$$\begin{aligned}&\lim _{k \rightarrow \infty } (\hat{\varvec{\varPhi }} + \varvec{v}_k) = W L_{\infty } (\bar{G}_{\mathscr {P}}^e |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W L_{\infty })^{-1} \hat{\varvec{\varPhi }}^e_{\mathscr {P}}, \quad \text {with} \quad \varvec{v}_k \in \mathscr {W}[0,T] \; \forall \; k. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ16.gif)
Alternatively, if the learning operator
satisfies

then, for
chosen sufficiently close to
, the ILC update converges to
![$$\begin{aligned}&\lim _{k \rightarrow \infty } (\hat{\varvec{\varPhi }} + \varvec{v}_k) = W ( L_{\infty } \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W )^{-1} L_{\infty } \hat{\varvec{\varPhi }}^e_{\mathscr {P}} \quad \text {with} \quad \varvec{v}_k \in \mathscr {W}[0,T] \; \forall \; k. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ18.gif)
![$$\begin{aligned} \varvec{v}_{k+1}&= \varvec{v}_k + W L_k ( \varvec{e}_{k} )^e_{\mathscr {P}}, \quad \quad k = 0,1,\ldots , \quad \varvec{v}_0 \in \mathscr {W}[0,T]. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ13.gif)
(6.13)
![$$L_k : \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}] \rightarrow \mathscr {L}^{p}_2 [0,T]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq55.gif)

(6.14)


(6.15)


![$$\begin{aligned}&\lim _{k \rightarrow \infty } (\hat{\varvec{\varPhi }} + \varvec{v}_k) = W L_{\infty } (\bar{G}_{\mathscr {P}}^e |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W L_{\infty })^{-1} \hat{\varvec{\varPhi }}^e_{\mathscr {P}}, \quad \text {with} \quad \varvec{v}_k \in \mathscr {W}[0,T] \; \forall \; k. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ16.gif)
(6.16)


(6.17)


![$$\begin{aligned}&\lim _{k \rightarrow \infty } (\hat{\varvec{\varPhi }} + \varvec{v}_k) = W ( L_{\infty } \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W )^{-1} L_{\infty } \hat{\varvec{\varPhi }}^e_{\mathscr {P}} \quad \text {with} \quad \varvec{v}_k \in \mathscr {W}[0,T] \; \forall \; k. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ18.gif)
(6.18)
Proof
Update (6.13) is equivalent to applying
to system (6.3) where
![$$\begin{aligned} \varvec{r}_{k+1} = \varvec{r}_k + L_k ( \varvec{e}_{k} )^e_{\mathscr {P}}, \quad \quad k = 0,1,\ldots , \quad \varvec{r}_0 \in \mathscr {L}_2^q[0,T] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ19.gif)
and hence
. The error dynamics locally satisfy
so if (6.14) holds, the extended error converges monotonically to zero since

For
sufficiently close to
, then
and
, and
so that if (6.14) holds

In addition, the input signals locally satisfy
so that, if (6.17) is satisfied,
![$$\begin{aligned} \lim _{k \rightarrow \infty } \varvec{v}_k&= W \big ( L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^{-1} L_{\infty } P \big ( \hat{\varvec{\varPhi }}_{\mathscr {P}} - \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} \hat{\varvec{\varPhi }} \big ) \nonumber \\[-0.2cm]&= W \big ( L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^{-1} L_{\infty } \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - \hat{\varvec{\varPhi }}. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ22.gif)

![$$\begin{aligned} \varvec{r}_{k+1} = \varvec{r}_k + L_k ( \varvec{e}_{k} )^e_{\mathscr {P}}, \quad \quad k = 0,1,\ldots , \quad \varvec{r}_0 \in \mathscr {L}_2^q[0,T] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ19.gif)
(6.19)
![$$\varvec{v}_k \in \mathscr {W}[0,T] \; \forall \; k$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq63.gif)


(6.20)




![$$\begin{aligned} \varvec{v}_{k+1}&= \varvec{v}_0 + W L_{\infty } \sum ^k_{i = 0} ( \varvec{e}_{i} )^e_{\mathscr {P}} = \varvec{v}_0 + W L_{\infty } \sum ^k_{i = 0} \big ( I - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W L_{\infty } \big )^i \nonumber \\[-0.4cm]&\quad \times \big ( \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} ( \hat{\varvec{\varPhi }} + \varvec{v}_0 ) \big ) \nonumber \\&= W L_{\infty } \sum ^k_{i = 0} \big ( I - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W L_{\infty } \big )^i \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - \hat{\varvec{\varPhi }} \nonumber \\[-0.9cm] \nonumber \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ51.gif)

(6.21)
![$$\begin{aligned} \varvec{r}_{k+1}&= \varvec{r}_{k} + L_{\infty } \big ( \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} (\hat{\varvec{\varPhi }} + W \varvec{r}_k) \big ) \nonumber \\&= \big ( I - L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big ) \varvec{r}_{k} + L_{\infty } \big ( \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} \hat{\varvec{\varPhi }} \big ) \nonumber \\&= \big ( I - L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^{k+1} \varvec{r}_0 \nonumber \\&\quad + \sum _{i = 0}^{k} \big ( I - L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^i L_{\infty } \big ( \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} \hat{\varvec{\varPhi }} \big ) \nonumber \\[-0.9cm] \nonumber \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ52.gif)
![$$\begin{aligned} \lim _{k \rightarrow \infty } \varvec{v}_k&= W \big ( L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^{-1} L_{\infty } P \big ( \hat{\varvec{\varPhi }}_{\mathscr {P}} - \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} \hat{\varvec{\varPhi }} \big ) \nonumber \\[-0.2cm]&= W \big ( L_{\infty } P \bar{G}_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_{\infty }} W \big )^{-1} L_{\infty } \hat{\varvec{\varPhi }}^e_{\mathscr {P}} - \hat{\varvec{\varPhi }}. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ22.gif)
(6.22)

Within Theorem 6.1, the linearized extended plant operator is defined by:
Lemma 6.1
Around operating point
the dynamics
are captured by the map
defined by
![$$\begin{aligned}&\bar{G}^e_{\mathscr {P}} |_{\tilde{\varvec{v}}} \varvec{v} = \left[ \begin{array}{c} (P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_1 \varvec{v} \\ \vdots \\ (P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_S \varvec{v} \end{array} \right] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ23.gif)
where
![$$\begin{aligned} ((P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_j \varvec{v})(t) = {P_j} {\int _0^{t}} C(t) \varGamma ( t, \tau ) B( \tau ) \varvec{v} (\tau ) \mathrm {d} \tau , \quad t \in [{t_{j-1}}, {t_j}], \; j = 1, \ldots , S \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ24.gif)
in which A(t), B(t), C(t) and
are defined in Lemma 4.2.


![$$\bar{G}^e_{\mathscr {P}} |_{\tilde{\varvec{v}}} : \mathscr {L}_2^{p}[0,T] \rightarrow \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq71.gif)
![$$\begin{aligned}&\bar{G}^e_{\mathscr {P}} |_{\tilde{\varvec{v}}} \varvec{v} = \left[ \begin{array}{c} (P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_1 \varvec{v} \\ \vdots \\ (P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_S \varvec{v} \end{array} \right] \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ23.gif)
(6.23)
![$$\begin{aligned} ((P \bar{G}_{\mathscr {P}} |_{\tilde{\varvec{v}}} )_j \varvec{v})(t) = {P_j} {\int _0^{t}} C(t) \varGamma ( t, \tau ) B( \tau ) \varvec{v} (\tau ) \mathrm {d} \tau , \quad t \in [{t_{j-1}}, {t_j}], \; j = 1, \ldots , S \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ24.gif)
(6.24)

Theorem 6.2
Within (6.13), let the ILC operator be given by

Setting
, this is equivalent to solving the underlying subspace problem
![$$\begin{aligned} \varDelta \varvec{r}_k := \min _{\varDelta \varvec{r}} \Big \{ \Vert \varDelta \varvec{r} \Vert ^2_{[R]} + \Vert (\varvec{e}_k)^e_{\mathscr {P}} - \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W \varDelta \varvec{r} \Vert ^2_{Q} \Big \}, \quad \quad \varvec{r}_0 = \varvec{0}. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ26.gif)
where
, with symmetric positive-definite weights Q and R.

(6.25)

![$$\begin{aligned} \varDelta \varvec{r}_k := \min _{\varDelta \varvec{r}} \Big \{ \Vert \varDelta \varvec{r} \Vert ^2_{[R]} + \Vert (\varvec{e}_k)^e_{\mathscr {P}} - \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W \varDelta \varvec{r} \Vert ^2_{Q} \Big \}, \quad \quad \varvec{r}_0 = \varvec{0}. \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ26.gif)
(6.26)
![$$[R] = W^\top R W$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq74.gif)
Proof
If
for all possible
, it follows that
. If
the solution to (6.26) is
with
given by (6.25) which satisfies (6.14) with limiting solution

corresponding to
The Lagrangian associated with minimum energy problem (6.27) is just, with Lagrange multiplier
,
Get Clinical Tree app for offline access







(6.29)

![$$\varvec{\lambda } \in \mathscr {L}_2^{p_1} [0, t_1] \times \cdots \times \mathscr {L}_2^{p_{S}} [t_{S-1}, t_{S}]$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq83.gif)
Lemma 6.2
Choosing
,
,
, the ILC update (6.25) realizes minimizing solutions (6.29) and (6.31) respectively in a single ILC iteration. In both cases the required term
in (4.4) can be computed efficiently as the outcome,
, of J iterations of the computation


where J and ![$$\alpha > 0$$” src=”/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_IEq96.gif”></SPAN> are sufficiently large and small values respectively.</DIV></DIV><br />
<DIV id=FPar8 class=]()






(6.33)

(6.34)
Proof
As
, update (6.25) and (6.30) respectively converge to
which it is shown in [1] correspond to solutions of the minimum energy problem

using gradient based ILC [2]. This equates to
iterations of update
![$$\begin{aligned}&\varDelta \varvec{r}_k^{j+1} = \varDelta \varvec{r}_k^j + \alpha ( P \bar{G}^e|_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W )^*\big ( (\varvec{e}_k)^e_{\mathscr {P}} - P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W \varDelta \varvec{r}_k^j \big ) \nonumber \\[-0.1cm] \Rightarrow&\varDelta \varvec{v}_k^{j+1} = \varDelta \varvec{v}_k^j + \alpha W ( P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W )^*\big ( (\varvec{e}_k)^e_{\mathscr {P}} - P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} \varDelta \varvec{v}_k^j \big ). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ36.gif)
Operator
is defined by a relation of the form
as the continuous solution of the costate equation

![$$\begin{aligned}&L_k = (\bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W)^{*} \big ( \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W (\bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W)^{*} \big )^{-1}, \quad \text {and} \nonumber \\[-0.1cm]&L_k = \big ( (\bar{G}^e_{ \mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W)^{*} \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W \big )^{-1} (\bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W)^{*} \nonumber \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ55.gif)

(6.35)

![$$\begin{aligned}&\varDelta \varvec{r}_k^{j+1} = \varDelta \varvec{r}_k^j + \alpha ( P \bar{G}^e|_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W )^*\big ( (\varvec{e}_k)^e_{\mathscr {P}} - P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W \varDelta \varvec{r}_k^j \big ) \nonumber \\[-0.1cm] \Rightarrow&\varDelta \varvec{v}_k^{j+1} = \varDelta \varvec{v}_k^j + \alpha W ( P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} W )^*\big ( (\varvec{e}_k)^e_{\mathscr {P}} - P \bar{G}^e_{\mathscr {P}} |_{\hat{\varvec{\varPhi }} + \varvec{v}_k} \varDelta \varvec{v}_k^j \big ). \end{aligned}$$](/wp-content/uploads/2016/09/A352940_1_En_6_Chapter_Equ36.gif)
(6.36)


