Applications of Local Antibiotics in Orthopedic Trauma

Local antibiotics have a role in orthopedic trauma for both infection prophylaxis and treatment. They provide the advantage of high local antibiotic concentration without excessive systemic levels. Nonabsorbable polymethylmethacrylate (PMMA) is a popular antibiotic carrier, but absorbable options including bone graft, bone graft substitutes, and polymers have gained acceptance. Simple aqueous antibiotic solutions continue to be investigated and appear to be clinically effective. For established infections, such as osteomyelitis, a combination of surgical debridement with local and systemic antibiotics seems to represent the most effective treatment at this time. Further investigation of more effective local antibiotic utilization is ongoing.

  • Aqueous antibiotic solution injected locally after wound closure is a simple delivery method that has demonstrated positive results in animal and clinical models.

  • Aqueous antibiotic solution injected locally after wound closure is a simple delivery method that has demonstrated positive results in animal and clinical models.

  • References

    1. 1. Pitt D., and Aubin J.M.: Joseph Lister: father of modern surgery. Can J Surg 2012; 55: pp. E8-E9

    2. 2. Fleming A.: The action of chemical and physiological antiseptics in a septic wound. Br J Surg 1920; 7: pp. 99-129

    3. 3. Jensen N.K., Johnsrud L.W., and Nelson M.C.: The local implantation of sulfonamide in compound fractures. Surgery 1939; 6: pp. 1-12

    4. 4. Anderson D.J., Sexton D.J., Kanafani Z.A., et al: Severe surgical site infection in community hospitals: epidemiology, key procedures, and the changing prevalence of methicillin-resistant . Infect Control Hosp Epidemiol 2007; 28: pp. 1047-1053

    5. 5. Schwarzkopf R., Takemoto R.C., Immerman I., et al: Prevalence of . J Bone Joint Surg Am 2010; 92: pp. 1815-1819

    6. 6. Obremskey W.T., Bhandari M., Dirschl D.R., et al: Internal fixation versus arthroplasty of comminuted fractures of the distal humerus. J Orthop Trauma 2003; 17: pp. 463-465

    7. 7. McGraw J.M., and Lim E.V.: Treatment of open tibial-shaft fractures. External fixation and secondary intramedullary nailing. J Bone Joint Surg Am 1988; 70: pp. 900-911

    8. 8. Raahave D.: Postoperative wound infection after implant and removal of osteosynthetic material. Acta Orthop Scand 1976; 47: pp. 28-35

    9. 9. Eckman J.B., Henry S.L., Mangino P.D., et al: Wound and serum levels of tobramycin with the prophylactic use of tobramycin-impregnated polymethylmethacrylate beads in compound fractures. Clin Orthop Relat Res 1988; undefined: pp. 213-215

    10. 10. Humphre J.S., Mehta S., Seaber A.V., et al: Pharmacokinetics of a degradable drug delivery system in bone. Clin Orthop Relat Res 1998; undefined: pp. 218-224

    11. 11. Tsourvakas S.: Local antibiotic therapy in the treatment of bone and soft tissue infections. In Danilla S. (eds): Selected Topics in Plastic Reconstructive Surgery. Rijeka (Croatia): InTech, 2012. pp. 17-44

    12. 12. Burdon D.W.: Principles of antimicrobial prophylaxis. World J Surg 1982; 6: pp. 262-267

    13. 13. Berend K.R., Lombardi A.V., Morris M.J., et al: Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res 2013; 471: pp. 510-518

    14. 14. Lazzarini L., Mader J.T., and Calhoun J.H.: Osteomyelitis in long bones. J Bone Joint Surg Am 2004; 86-A: pp. 2305-2318

    15. 15. Edin M.L., Miclau T., Lester G.E., et al: Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res 1996; undefined: pp. 245-251

    16. 16. Chang Y., Goldberg V.M., and Caplan A.I.: Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clin Orthop Relat Res 2006; undefined: pp. 242-249

    17. 17. Holtom P.D., Pavkovic S.A., Bravos P.D., et al: Inhibitory effects of the quinolone antibiotics trovafloxacin, ciprofloxacin, and levofloxacin on osteoblastic cells in vitro. J Orthop Res 2000; 18: pp. 721-727

    18. 18. Hall-Stoodley L., Stoodley P., Kathju S., et al: Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 2012; 65: pp. 127-145

    19. 19. Zoubos A.B., Galanakos S.P., and Soucacos P.N.: Orthopedics and biofilm–what do we know? A review. Med Sci Monit 2012; 18: pp. RA89-RA96

    20. 20. Arnold W.V., Shirtliff M.E., and Stoodley P.: Bacterial biofilms and periprosthetic infections. Instr Course Lect 2014; 63: pp. 385-391

    21. 21. Renner L.D., and Weibel D.B.: Physicochemical regulation of biofilm formation. MRS Bull 2011; 36: pp. 347-355

    22. 22. Berbari E.F., Hanssen A.D., Duffy M.C., et al: Risk factors for prosthetic joint infection: case-control study. Clin Infect Dis 1998; 27: pp. 1247-1254

    23. 23. Costerton J.W., Post J.C., Ehrlich G.D., et al: New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol 2011; 61: pp. 133-140

    24. 24. Trampuz A., Piper K.E., Jacobson M.J., et al: Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med 2007; 357: pp. 654-663

    25. 25. Rodrigues L.: Inhibition of bacterial adhesion on medical devices. In Linke D., and Golman A. (eds): Bacterial Adhesion: Chemistry, Biology, and Physics. Dordrecht (The Netherlands): Springer, 2011. pp. 351-367

    26. 26. Shapiro I.M., Hickok N.J., Parvizi J., et al: Molecular engineering of an orthopaedic implant: from bench to bedside. Eur Cell Mater 2012; 23: pp. 362-370

    27. 27. Stewart S., Barr S., Engiles J., et al: Vancomycin-modified implant surface inhibits biofilm formation and supports bone-healing in an infected osteotomy model in sheep: a proof-of-concept study. J Bone Joint Surg Am 2012; 94: pp. 1406-1415

    28. 28. Nelson C.L.: The current status of material used for depot delivery of drugs. Clin Orthop Relat Res 2004; undefined: pp. 72-78

    29. 29. Decoster T.A., and Bozorgnia S.: Antibiotic beads. J Am Acad Orthop Surg 2008; 16: pp. 674-678

    30. 30. Diefenbeck M., Muckley T., and Hofmann G.O.: Prophylaxis and treatment of implant-related infections by local application of antibiotics. Injury 2006; 37: pp. S95-S104

    31. 31. van de Belt H., Neut D., Schenk W., et al: [object Object]. Biomaterials 2001; 22: pp. 1607-1611

    32. 32. Ensing G.T., van Horn J.R., van der Mei H.C., et al: Copal bone cement is more effective in preventing biofilm formation than Palacos R-G. Clin Orthop Relat Res 2008; 466: pp. 1492-1498

    33. 33. Snir N., Meron-Sudai S., Deshmukh A.J., et al: Antimicrobial properties and elution kinetics of linezolid from polymethylmethacrylate. Orthopedics 2013; 36: pp. e1412-e1417

    34. 34. Duncan C.P., and Masri B.A.: The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. Instr Course Lect 1995; 44: pp. 305-313

    35. 35. Cui Q., Mihalko W.M., Shields J.S., et al: Antibiotic-impregnated cement spacers for the treatment of infection associated with total hip or knee arthroplasty. J Bone Joint Surg Am 2007; 89: pp. 871-882

    36. 36. Bistolfi A., Massazza G., Verne E., et al: Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop 2011; 2011: pp. 290851

    37. 37. Popham G.J., Mangino P., Seligson D., et al: Antibiotic-impregnated beads. Part II: factors in antibiotic selection. Orthop Rev 1991; 20: pp. 331-337

    38. 38. Sasaki T., Ishibashi Y., Katano H., et al: In vitro elution of vancomycin from calcium phosphate cement. J Arthroplasty 2005; 20: pp. 1055-1059

    39. 39. Henry S.L., Ostermann P.A., and Seligson D.: The prophylactic use of antibiotic impregnated beads in open fractures. J Trauma 1990; 30: pp. 1231-1238

    40. 40. Greene N., Holtom P.D., Warren C.A., et al: In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from Simplex and Palacos. Am J Orthop (Belle Mead NJ) 1998; 27: pp. 201-205

    41. 41. Anagnostakos K., Kelm J., Regitz T., et al: In vitro evaluation of antibiotic release from and bacteria growth inhibition by antibiotic-loaded acrylic bone cement spacers. J Biomed Mater Res B Appl Biomater 2005; 72: pp. 373-378

    42. 42. Nelson C.L., Griffin F.M., Harrison B.H., et al: In vitro elution characteristics of commercially and noncommercially prepared antibiotic PMMA beads. Clin Orthop Relat Res 1992; undefined: pp. 303-309

    43. 43. Barton A.J., Sagers R.D., and Pitt W.G.: Measurement of bacterial growth rates on polymers. J Biomed Mater Res 1996; 32: pp. 271-278

    44. 44. Hendriks J.G., van Horn J.R., van der Mei H.C., et al: Backgrounds of antibiotic-loaded bone cement and prosthesis-related infection. Biomaterials 2004; 25: pp. 545-556

    45. 45. Jiranek W.A., Hanssen A.D., and Greenwald A.S.: Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am 2006; 88: pp. 2487-2500

    46. 46. Elson R.A., Jephcott A.E., McGechie D.B., et al: Antibiotic-loaded acrylic cement. J Bone Joint Surg Br 1977; 59: pp. 200-205

    47. 47. Hendriks J.G., Neut D., van Horn J.R., et al: Bacterial survival in the interfacial gap in gentamicin-loaded acrylic bone cements. J Bone Joint Surg Br 2005; 87: pp. 272-276

    48. 48. Torholm C., Lidgren L., Lindberg L., et al: Total hip joint arthroplasty with gentamicin-impregnated cement. A clinical study of gentamicin excretion kinetics. Clin Orthop Relat Res 1983; undefined: pp. 99-106

    49. 49. Wahlig H., and Dingeldein E.: Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 1980; 51: pp. 49-56

    50. 50. Prasarn M.L., Zych G., and Ostermann P.A.W.: Wound management for severe open fractures: use of antibiotic bead pouches and vacuum-assisted closure. Am J Orthop (Belle Mead NJ) 2009; 38: pp. 559-563

    51. 51. Keating J.F., Blachut P.A., O’Brien P.J., et al: Reamed nailing of open tibia fractures: does the antibiotic bead pouch reduce the deep infection rate? J Orthop Trauma 1996; 10: pp. 298-303

    52. 52. Henry S.L., Ostermann P.A., and Seligson D.: The antibiotic bead pouch technique. The management of severe compound fractures. Clin Orthop Relat Res 1993; undefined: pp. 54-62

    53. 53. Stinner D.J., Hsu J.R., and Wenke J.C.: Negative pressure wound therapy reduces the effectiveness of traditional local antibiotic depot in a large complex musculoskeletal wound animal model. J Orthop Trauma 2012; 26: pp. 512-518

    54. 54. Warner M., Henderson C., Kadrmas W., et al: Comparison of vacuum-assisted closure to the antibiotic bead pouch for the treatment of blast injury of the extremity. Orthopedics 2010; 33: pp. 77-82

    55. 55. Chen N.T., Hong H.Z., Hooper D.C., et al: The effect of systemic antibiotic and antibiotic-impregnated polymethylmethacrylate beads on the bacterial clearance in wounds containing contaminated dead bone. Plast Reconstr Surg 1993; 92: pp. 1305-1311

    56. 56. Fitzgerald R.H.: Experimental osteomyelitis: description of a canine model and the role of depot administration of antibiotics in the prevention and treatment of sepsis. J Bone Joint Surg Am 1983; 65A: pp. 371-380

    57. 57. Ostermann P.A., Henry S.L., and Seligson D.: The role of local antibiotic therapy in the management of compound fractures. Clin Orthop Relat Res 1993; undefined: pp. 102-111

    58. 58. Ostermann P.A., Seligson D., and Henry S.L.: Local antibiotic therapy for severe open fractures. A review of 1085 consecutive cases. J Bone Joint Surg Br 1995; 77: pp. 93-97

    59. 59. Evans R.P., and Nelson C.L.: Gentamicin-impregnated polymethylmethacrylate beads compared with systemic antibiotic therapy in the treatment of chronic osteomyelitis. Clin Orthop Relat Res 1993; undefined: pp. 37-42

    60. 60. Nelson C.L., McLaren S.G., Skinner R.A., et al: The treatment of experimental osteomyelitis by surgical debridement and the implantation of calcium sulfate tobramycin pellets. J Orthop Res 2002; 20: pp. 643-647

    61. 61. Patzakis M.J., Mazur K., Wilkins J., et al: Septopal beads and autogenous bone grafting for bone defects in patients with chronic osteomyelitis. Clin Orthop Relat Res 1993; undefined: pp. 112-118

    62. 62. Calhoun J.H., Henry S.L., Anger D.M., et al: The treatment of infected nonunions with gentamicin-polymethylmethacrylate antibiotic beads. Clin Orthop Relat Res 1993; undefined: pp. 23-27

    63. 63. Evans R.P.: Successful treatment of total hip and knee infection with articulating antibiotic components: a modified treatment method. Clin Orthop Relat Res 2004; undefined: pp. 37-46

    64. 64. Koo K.H., Yang J.W., Cho S.H., et al: Impregnation of vancomycin, gentamicin, and cefotaxime in a cement spacer for two-stage cementless reconstruction in infected total hip arthroplasty. J Arthroplasty 2001; 16: pp. 882-892

    65. 65. Masri B.A., Duncan C.P., and Beauchamp C.P.: Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplasty 1998; 13: pp. 331-338

    66. 66. Riel R.U., and Gladden P.B.: A simple method for fashioning an antibiotic cement-coated interlocking intramedullary nail. Am J Orthop (Belle Mead NJ) 2010; 39: pp. 18-21

    67. 67. Thonse R., and Conway J.: Antibiotic cement-coated interlocking nail for the treatment of infected nonunions and segmental bone defects. J Orthop Trauma 2007; 21: pp. 258-268

    68. 68. Kim J.W., Cuellar D.O., Hao J., et al: Custom-made antibiotic cement nails: a comparative study of different fabrication techniques. Injury 2014; 45: pp. 1179-1184

    69. 69. Masquelet A.C., Fitoussi F., Begue T., et al: Reconstruction of the long bones by the induced membrane and spongy autograft. Ann Chir Plast Esthet 2000; 45: pp. 346-353

    70. 70. Masquelet A.C., and Begue T.: The concept of induced membrane for reconstruction of long bone defects. Orthop Clin North Am 2010; 41: pp. 27-37

    71. 71. Karger C., Kishi T., Schneider L., et al: Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 2012; 98: pp. 97-102

    72. 72. Kendall R.W., Duncan C.P., Smith J.A., et al: Persistence of bacteria on antibiotic loaded acrylic depots. A reason for caution. Clin Orthop Relat Res 1996; undefined: pp. 273-280

    73. 73. von Eiff C., Bettin D., Proctor R.A., et al: Recovery of small colony variants of . Clin Infect Dis 1997; 25: pp. 1250-1251

    74. 74. Wininger D.A., and Fass R.J.: Antibiotic-impregnated cement and beads for orthopedic infections. Antimicrob Agents Chemother 1996; 40: pp. 2675-2679

    75. 75. Granchi D., Ciapetti G., Savarino L., et al: Effects of bone cement extracts on the cell-mediated immune response. Biomaterials 2002; 23: pp. 1033-1041

    76. 76. Salvati E.A., Callaghan J.J., Brause B.D., et al: Reimplantation in infection. Elution of gentamicin from cement and beads. Clin Orthop Relat Res 1986; undefined: pp. 83-93

    77. 77. Neut D., van de Belt H., van Horn J.R., et al: Residual gentamicin-release from antibiotic-loaded polymethylmethacrylate beads after 5 years of implantation. Biomaterials 2003; 24: pp. 1829-1831

    78. 78. McKee M.D., Wild L.M., Schemitsch E.H., et al: The use of an antibiotic-impregnated, osteoconductive, bioabsorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J Orthop Trauma 2002; 16: pp. 622-627

    79. 79. McLaren A.C.: Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res 2004; undefined: pp. 101-106

    80. 80. McLaren A.C.: Antibiotic impregnated bone graft. J Orthop Trauma 1989; 3: pp. 171

    81. 81. Chan Y.S., Ueng S.W., Wang C.J., et al: Management of small infected tibial defects with antibiotic-impregnated autogenic cancellous bone grafting. J Trauma 1998; 45: pp. 758-764

    82. 82. Chan Y.S., Ueng S.W., Wang C.J., et al: Antibiotic-impregnated autogenic cancellous bone grafting is an effective and safe method for the management of small infected tibial defects: a comparison study. J Trauma 2000; 48: pp. 246-255

    83. 83. Khoo P.P., Michalak K.A., Yates P.J., et al: Iontophoresis of antibiotics into segmental allografts. J Bone Joint Surg Br 2006; 88: pp. 1149-1157

    84. 84. Mackey D., Varlet A., and Debeaumont D.: Antibiotic loaded plaster of Paris pellets: an in vitro study of a possible method of local antibiotic therapy in bone infection. Clin Orthop Relat Res 1982; undefined: pp. 263-268

    85. 85. Beardmore A.A., Brooks D.E., Wenke J.C., et al: Effectiveness of local antibiotic delivery with an osteoinductive and osteoconductive bone-graft substitute. J Bone Joint Surg Am 2005; 87: pp. 107-112

    86. 86. Borrelli J., Prickett W.D., and Ricci W.M.: Treatment of nonunions and osseous defects with bone graft and calcium sulfate. Clin Orthop Relat Res 2003; undefined: pp. 245-254

    87. 87. Turner T.M., Urban R.M., Gitelis S., et al: Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute, a bone-graft expander, and a method for local antibiotic delivery. One institution’s experience. J Bone Joint Surg Am 2001; 83-A: pp. 8-18

    88. 88. Urban R.M., Turner T.M., Hall D.J., et al: Healing of large defects treated with calcium sulfate pellets containing demineralized bone matrix particles. Orthopedics 2003; 26: pp. s581-s585

    89. 89. Blaha J.D.: Calcium sulfate bone-void filler. Orthopedics 1998; 21: pp. 1017-1019

    90. 90. El-Husseiny M., Patel S., MacFarlane R.J., et al: Biodegradable antibiotic delivery systems. J Bone Joint Surg Br 2011; 93-B: pp. 151-157

    91. 91. Anagnostakos K., and Schroder K.: Antibiotic-impregnated bone grafts in orthopaedic and trauma surgery: a systematic review of the literature. Int J Biomater 2012; 2012: pp. 538061

    92. 92. Chen C.E., Ko J.Y., and Pan C.C.: Results of vancomycin-impregnated cancellous bone grafting for infected tibial nonunion. Arch Orthop Trauma Surg 2005; 125: pp. 369-375

    93. 93. Wilson K.J., Cierny G., Adams K.R., et al: Comparative evaluation of the diffusion of tobramycin and cefotaxime out of antibiotic-impregnated polymethylmethacrylate beads. J Orthop Res 1988; 6: pp. 279-286

    94. 94. Scott C.P., Higham P.A., and Dumbleton J.H.: Effectiveness of bone cement containing tobramycin. An in vitro susceptibility study of 99 organisms found in infected joint arthroplasty. J Bone Joint Surg Br 1999; 81: pp. 440-443

    95. 95. Gitelis S., and Brebach G.T.: The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. J Orthop Surg (Hong Kong) 2002; 10: pp. 53-60

    96. 96. Sulo I.: Gentamycin impregnated plaster beads in the treatment of bone infection. Rev Chir Orthop Reparatrice Appar Mot 1993; 79: pp. 299-305

    97. 97. McKee M.D., Li-Bland E.A., Wild L.M., et al: A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J Orthop Trauma 2010; 24: pp. 483-490

    98. 98. McConoughey S.J., Howlin R.P., Wiseman J., et al: Comparing PMMA and calcium sulfate as carriers for the local delivery of antibiotics to infected surgical sites. J Biomed Mater Res B Appl Biomater 2015; 103: pp. 870-877

    99. 99. Sato S., Koshino T., and Saito T.: Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture. Biomaterials 1998; 19: pp. 1895-1900

    100. 100. Korkusuz F., Uchida A., Shinto Y., et al: Experimental implant-related osteomyelitis treated by antibiotic-calcium hydroxyapatite ceramic composites. J Bone Joint Surg Br 1993; 75: pp. 111-114

    101. 101. Rauschmann M.A., Wichelhaus T.A., Stirnal V., et al: Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials 2005; 26: pp. 2677-2684

    102. 102. Sanicola S.M., and Albert S.F.: The in vitro elution characteristics of vancomycin and tobramycin from calcium sulfate beads. J Foot Ankle Surg 2005; 44: pp. 121-124

    103. 103. Cai X., Han K., Cong X., et al: The use of calcium sulfate impregnated with vancomycin in the treatment of open fractures of long bones: a preliminary study. Orthopedics 2010; 33:

    104. 104. Rao K.P.: Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed 1995; 7: pp. 623-645

    105. 105. Reddi A.H.: Implant-stimulated interface reactions during collagenous bone matrix-induced bone formation. J Biomed Mater Res 1985; 19: pp. 233-239

    106. 106. Sorensen T.S., Sorensen A.I., and Merser S.: Rapid release of gentamicin from collagen sponge. In vitro comparison with plastic beads. Acta Orthop Scand 1990; 61: pp. 353-356

    107. 107. Uludag H., Friess W., Williams D., et al: rhBMP-collagen sponges as osteoinductive devices: effects of in vitro sponge characteristics and protein pI on in vivo rhBMP pharmacokinetics. Ann N Y Acad Sci 1999; 875: pp. 369-378

    108. 108. Stemberger A., Grimm H., Bader F., et al: Local treatment of bone and soft tissue infections with the collagen-gentamicin sponge. Eur J Surg Suppl 1997; undefined: pp. 17-26

    109. 109. Chaudhary S., Sen R.K., Saini U.C., et al: Use of gentamicin-loaded collagen sponge in internal fixation of open fractures. Chin J Traumatol 2011; 14: pp. 209-214

    110. 110. Ascherl R., Stemberger A., Lechner F., et al: Treatment of chronic osteomyelitis with a collagen-antibiotic compound–preliminary report. Unfallchirurgie 1986; 12: pp. 125-127

    111. 111. von Hasselbach C.: Clinical aspects and pharmacokinetics of collagen-gentamicin as adjuvant local therapy of osseous infections. Unfallchirurg 1989; 92: pp. 459-470

    112. 112. Ipsen T., Jorgensen P.S., Damholt V., et al: Gentamicin-collagen sponge for local applications. 10 cases of chronic osteomyelitis followed for 1 year. Acta Orthop Scand 1991; 62: pp. 592-594

    113. 113. Wernet E., Ekkernkamp A., Jellestad H., et al: Antibiotic-containing collagen sponge in therapy of osteitis. Unfallchirurg 1992; 95: pp. 259-264

    114. 114. Hettfleisch J., and Schottle H.: Local preventive antibiotic treatment in intramedullary nailing with gentamycin impregnated biomaterials. Aktuelle Traumatol 1993; 23: pp. 68-71

    115. 115. Chang W.K., Srinivasa S., MacCormick A.D., et al: Gentamicin-collagen implants to reduce surgical site infection: systematic review and meta-analysis of randomized trials. Ann Surg 2013; 258: pp. 59-65

    116. 116. Lovallo J., Helming J., Jafari S.M., et al: Intraoperative intra-articular injection of gentamicin: will it decrease the risk of infection in total shoulder arthroplasty? J Shoulder Elbow Surg 2014; 23: pp. 1272-1276

    117. 117. Yarboro S.R., Baum E.J., and Dahners L.E.: Locally administered antibiotics for prophylaxis against surgical wound infection. An in vivo study. J Bone Joint Surg Am 2007; 89: pp. 929-933

    118. 118. Cavanaugh D.L., Berry J., Yarboro S.R., et al: Better prophylaxis against surgical site infection with local as well as systemic antibiotics. An in vivo study. J Bone Joint Surg Am 2009; 91: pp. 1907-1912

    119. 119. Miclau T., Dahners L.E., and Lindsey R.W.: In vitro pharmacokinetics of antibiotic release from locally implantable materials. J Orthop Res 1993; 11: pp. 627-632

    120. 120. McLaren A.C., McLaren S.G., Nelson C.L., et al: The effect of sampling method on the elution of tobramycin from calcium sulfate. Clin Orthop Relat Res 2002; undefined: pp. 54-57

    121. 121. Wahlig H., Dingeldein E., Bergmann R., et al: The release of gentamicin from polymethylmethacrylate beads. An experimental and pharmacokinetic study. J Bone Joint Surg Br 1978; 60-B: pp. 270-275

    122. 122. Anagnostakos K., Wilmes P., Schmitt E., et al: Elution of gentamicin and vancomycin from polymethylmethacrylate beads and hip spacers in vivo. Acta Orthop 2009; 80: pp. 193-197

    123. 123. Rathbone C.R., Cross J.D., Brown K.V., et al: Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J Orthop Res 2011; 29: pp. 1070-1074

    124. 124. Livio F., Wahl P., Csajka C., et al: Tobramycin exposure from active calcium sulfate bone graft substitute. BMC Pharmacol Toxicol 2014; 15: pp. 12

    125. 125. Hansen E.N., Zmistowski B., and Parvizi J.: Periprosthetic joint infection: what is on the horizon? Int J Artif Organs 2012; 35: pp. 935-950

    126. 126. Kizhner V., Krespi Y.P., Hall-Stoodley L., et al: Laser-generated shockwave for clearing medical device biofilms. Photomed Laser Surg 2011; 29: pp. 277-282

    127. 127. Ercan B., Kummer K.M., Tarquinio K.M., et al: Decreased . Acta Biomater 2011; 7: pp. 3003-3012

    128. 128. Del Pozo J.L., Rouse M.S., Euba G., et al: The electricidal effect is active in an experimental model of . Antimicrob Agents Chemother 2009; 53: pp. 4064-4068

    129. 129. van der Borden A.J., van der Mei H.C., and Busscher H.J.: Electric block current induced detachment from surgical stainless steel and decreased viability of . Biomaterials 2005; 26: pp. 6731-6735

    130. 130. Pickering S.A., Bayston R., and Scammell B.E.: Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. J Bone Joint Surg Br 2003; 85: pp. 588-593

    131. 131. Peck K.R., Kim S.W., Jung S.I., et al: Antimicrobials as potential adjunctive agents in the treatment of biofilm infection with . Chemotherapy 2003; 49: pp. 189-193

    132. 132. Saginur R., Stdenis M., Ferris W., et al: Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections. Antimicrob Agents Chemother 2006; 50: pp. 55-61

    133. 133. Kolodkin-Gal I., Romero D., Cao S., et al: D-amino acids trigger biofilm disassembly. Science 2010; 328: pp. 627-629

    134. 134. Sanchez C.J., Akers K.S., Romano D.R., et al: D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of . Antimicrob Agents Chemother 2014; 58: pp. 4353-4361

    135. 135. Losick R., Kolodkin-Gal I., Romero D., et al: D-amino acids trigger biofilm disassembly. Science 2010; 328: pp. 627-629

    136. 136. Wenke J.C., Sanchez C.J., Akers K.S., et al: D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58: pp. 4353-4561

    Only gold members can continue reading. Log In or Register to continue

    Feb 23, 2017 | Posted by in ORTHOPEDIC | Comments Off on Applications of Local Antibiotics in Orthopedic Trauma
    Premium Wordpress Themes by UFO Themes