Ankle and foot

CHAPTER 7 ANKLE AND FOOT




A LIGAMENT STRESS TESTS




Anterior talofibular ligament stress test






Clinical context


The ATFL is the most important lateral stabilizer of the ankle and the most frequently injured (Tohyama et al 1995, Trojian & McKeag 1998, Wolfe et al 2001). With the foot in a neutral position, the fibula–ATFL angle is around 90° (i.e. the ligament runs approximately parallel to the sole of the foot) but plantarflexion brings it increasingly parallel to the long axis of the fibula where it functions as the main collateral ligament (Bahr et al 1997). In increasing degrees of plantarflexion and inversion, strain of the ATFL increases, more so than the calcaneofibular ligament (CFL), thereby rendering the ATFL most vulnerable in this position (Bahr et al 1997, Colville et al 1990). The posterior talofibular ligament is the strongest of the lateral complex and is only injured in a severe inversion sprain (Wolfe et al 2001).


While careful physical examination has been shown to be a valuable tool in the detection of ankle fracture (see clinical tip; Stiell et al 1994), accurate evaluation of ligament injury is more difficult (Fujii et al 2000, Van Dijk et al 1996). Isolated tears do not tend to produce significant instability and pain is usually the dominant finding on stress testing. If the trauma is more severe and accompanied by swelling and bruising, instability testing should be performed (i.e. drawer test, p. 250, and talar tilt test, p. 248) with the index of suspicion high of a double rupture of the ATFL and the CFL, if positive (Bahr et al 1997).




Calcaneofibular ligament stress test







Calcaneocuboid ligament stress test







Medial collateral ligament stress test





Clinical context


The medial ligament is a very strong fan-shaped structure (composed of the tibionavicular, tibiocalcaneal, anterior and posterior tibiotalar ligaments) which limits eversion of the ankle and lateral displacement of the talus. It is made up of superficial bands which are mainly vertically orientated, limiting rear foot eversion, and deeper fibres, more transverse in direction, which limit abduction/external rotation of the talus (Placzek & Boyce 2006). Its strength is demonstrated by the fact that the malleolus often fractures before the ligament ruptures – 75% of ankle fractures occur on the medial side. Conversely, medial ligament injury represents only 10% of ankle sprains (Trojian & McKeag 1998) and this is attributed to the enhanced medial stability afforded by the mortise of the ankle, the articulation between the medial malleolus and talus and the anterior tibiofibular ligament, all of which make injury much less likely than on the lateral side (Wolfe et al 2001).


Injury to the medial ligament will be evident by the mechanism of injury (excessive eversion with the foot in a neutral or slightly dorsiflexed position), local tenderness, swelling and a positive medial ligament test. If significant trauma has occurred other injuries should also be considered such as a syndesmosis injury (see external rotation stress test, p. 244) or fracture, i.e. Maisonneuve fracture (proximal fibula), distal fibular fracture or avulsion fracture of the medial malleolus (Trojian & McKeag 1998) requiring further evaluation (see Ottowa rules, p. 238) and possible surgical intervention.



Aug 8, 2016 | Posted by in MUSCULOSKELETAL MEDICINE | Comments Off on Ankle and foot

Full access? Get Clinical Tree

Get Clinical Tree app for offline access