Abstract
To perform shoulder arthroscopy, the surgeon must be familiar with the basic setup. This involves knowledge of patient preparation and positioning, the equipment and instruments used in the operating room, and the roles of staff in the operating room. Fundamentals of proper patient care include identification of the surgical site, application of anesthesia, and positioning the patient to protect them while under anesthesia. The operating room equipment includes video technology and fluid management technology. The instruments are the fine tools that allow the surgeon to manipulate and repair target tissues. All of these are reviewed in this chapter.
Keywords
arthroscopic instruments, operating room setup, beach chair, arthroscopic equipment
This chapter covers the general organization of the operating room, anesthesia, patient positioning, as well as equipment and instruments.
Clinical Data
It is helpful to have a copy of the patient’s record in the operating room. This allows the surgeon to compare the examination under anesthesia with the examination documented in the office. For patients with glenohumeral instability, the surgeon can compare the patient’s report of which activities or motions produce pain to the amount of translation observed during examination under anesthesia. The patient record also includes a summary of the pertinent findings on magnetic resonance imaging, ultrasonography, and computed tomography, allowing the surgeon to assess these to the findings at arthroscopy. The pertinent imaging studies are also placed in plain view for review if needed ( Figs. 2.1–2.3 ). With the advent of electronic medical records, this goal may be achieved by having a computer or laptop in the room displaying the pertinent data.
Setup and Preparation
The operating room layout is shown in Fig. 2.4 . There must be adequate space to maneuver between the head of the table and the anesthetist. The cart with the arthroscopy equipment is angled toward the surgeon so all of the settings can be seen if needed. Similarly, the arthroscopic pump and fluid bags should be visible so the surgeon can see the pressure and flow at any time. The surgeon should also ask the anesthetist to rotate the blood pressure monitor so that he can check it during the procedure without disturbing his or her concentration. An absorbent mat to collect fluid is placed on the floor. The foot pedals that control the power instruments and cautery are placed for easy access ( Figs. 2.5–2.9 ).
The shoulder preparation table contains the skin razor and adhesive tape for removing hair. We use an iodine-based product (Duraprep); for individuals with iodine allergy, a chlorhexidine gluconate (Hibiclens) scrub is followed by an isopropyl alcohol solution. We prefer to have the patient’s hair shaved from the area that will be covered by the bandage. It is not necessary to shave the axilla.
Only those instruments required for the operation are placed on the Mayo stand. The back table contains rarely used instruments and the postoperative dressing ( Fig. 2.10 ).
Anesthesia
We routinely perform an interscalene block in the preoperative holding area, but this is surgeon preference. The patient is then moved to the operating room, where general anesthesia is started. Because many patients find remaining motionless in the seated position uncomfortable, and we find patient movement and conversation distracting, we prefer to use general anesthesia rather than operating under regional block alone. The interscalene block has no direct effect on blood pressure. With sensory input blocked, there is no sympathetic response to the otherwise painful stimuli, and catecholamine release is avoided. The beta-antagonistic effects (vasodilation and bradycardia) of the general anesthetic agents are then more pronounced, without the pain response to offset them. This causes relative bradycardia and hypotension. The result is improved visualization. Because the operated area is anesthetized, only light general anesthesia is necessary, minimizing postoperative nausea. Some anesthesiologists prefer a laryngeal mask airway, which eliminates the need for endotracheal intubation. Immediate postoperative pain is well controlled ( Figs. 2.11 and 2.12 ).
To avoid “wrong site” surgery, always confirm with the patient which shoulder is to be operated on. This is done in the preoperative holding area before the patient receives any sedation. The anesthesiologist uses a surgical marking pen to write “yes” on that shoulder prior to administering the block. The surgeon also asks the patient to confirm the correct site and writes his or her initials and a “yes” on the correct shoulder ( Fig. 2.13 ).
Patient Positioning
Successful shoulder arthroscopy is the result of planning and organization. Many seemingly minor details can have a profound effect on the procedure, and we encourage all surgeons to invest the necessary time to adequately prepare the operating room and the surgical staff.
Patients are positioned in either the lateral decubitus or the sitting (beach-chair) orientation. Each position has its advantages and disadvantages, and surgeon preference should dictate the choice. Both diagnostic and reconstructive shoulder arthroscopy can be performed successfully in either position. We generally use the beach-chair position. Patient positioning is critical as this aids in portal placement and facilitates the procedure. Incorrect positioning adds complexity to an already difficult procedure.
Lateral Decubitus Position
The lateral decubitus position offers excellent access to the glenohumeral joint and allows arm suspension (and distraction, as necessary) without the need for an assistant. The surgeon can choose to terminate the arthroscopic procedure and can easily perform an open operation in the subacromial space. Disadvantages include the need to lift and turn the patient, the possibility of excessive distraction across the glenohumeral joint and potential nerve injury, limited access to the anterior shoulder in the subacromial space, and the need to reposition the patient if an open anterior glenohumeral reconstruction is required. Another potential disadvantage is the tendency for the suspension apparatus to place the arm in internal rotation. This is important in glenohumeral reconstruction because repair of the glenohumeral ligaments or rotator interval with the arm in internal rotation may result in permanent loss of external rotation. The surgeon can overcome all these difficulties with appropriate care.
Before the patient is brought to the operating room, a vacuum beanbag is placed on the operating table and smoothed ( Table 2.1 ). The patient is assisted onto the table and centered on the beanbag. The cephalad edge of the beanbag should be level with the patient’s upper thorax, but not high enough to protrude into the axilla. After general endotracheal anesthesia has been established, the tube is secured on the side of the mouth away from the surgical site. Both shoulders are examined for range of motion and translation. The patient is then turned over on the unaffected side, with the pelvis and shoulders perpendicular to the table. The beanbag is gathered up around the patient and deflated so that it is firm. The operating table is tilted 20 to 30 degrees posteriorly so that the glenoid is parallel to the floor. Considerable attention is given to protecting the neurovascular structures, soft tissues, and bony prominences. A soft sheet is rolled into a cylinder approximately 6 inches in diameter and placed under the upper thorax to raise the patient’s chest off the table and thereby minimize pressure on the neurovascular structures within the axilla. The roll should not be placed in the axilla. A 1-L fluid bag wrapped in a towel also works nicely. The downside hip and knee are slightly flexed to stabilize the patient. Pillows are placed between the legs to protect the ankles, knees, and peroneal nerves, and the breasts are carefully padded. Kidney rests are useful to support the beanbag, and broad adhesive tape may be used to further stabilize the patient. The cervical spine must be supported to prevent any hyperextension or lateral angulation during the procedure. An electrosurgical grounding pad is placed over the muscular area of the lateral thigh. The surgeon should inspect the patient’s position carefully and check each pressure area to make sure it is adequately padded.
|
The circulating nurse prepares the entire shoulder, arm, and hand. An assistant grasps the patient’s wrist with a sterile towel, and the surgeon and scrub nurse place the lower U-drape over the patient. The forearm and hand are then placed in the traction device. The wrist is carefully padded to avoid pressure on the sensory branch of the radial nerve. The arm is placed on the lower drape, the upper drape is put into position, and the fluid collection pouch is applied. The arm is attached to the suspension device. Usually 10 pounds of weight is sufficient, but the weight may be increased slightly for larger individuals. The surgeon should think of the suspension device as a stabilizing mechanism rather than a method of producing traction. The shoulder is positioned in 60 degrees of abduction and 10 degrees of flexion.
Sitting Position
We prefer the term sitting position rather than the older beach-chair position because the patient’s thorax must be placed 70 to 80 degrees relative to the floor. This upright position is necessary to place the acromion parallel to the floor and allow access to the posterior shoulder. A more recumbent position forces the surgeon to “work uphill” and makes entry into the inferior–posterior shoulder difficult if such a portal is required for glenohumeral reconstruction. One advantage of the sitting position is that it is similar to that used during traditional open operations, so conversion from an arthroscopic to an open rotator cuff repair or glenohumeral reconstruction does not require a change in patient position. Also, the anterior shoulder is more approachable than in the lateral decubitus position; the surgeon need not lean over the patient to gain anterior access. In this position, the arthroscopic orientation seems more familiar to surgeons, with the vertical orientation of the glenoid similar to that seen during physical examination or radiographic review. Shoulder distraction is not continuous, which minimizes the chance of neurologic injury; the assistant can provide a distraction force during the brief periods when this is needed. A mechanical arm holder can maintain the shoulder in external rotation during glenohumeral reconstruction and in elevation during rotator cuff repair. A special bed needs to be used in which the corner around the shoulder is either absent or removable to allow access to the upper quadrant of the extremity. A regular bed can be used with the patient pulled over to the operative side partially off of the bed, but access to the shoulder and the security of cervical spine stabilization is compromised. This special bed and the arm-holding device are helpful, but not essential, and they do add a fixed cost to the procedure that is not present in lateral decubitus positioning ( Table 2.2 ).
|
Once the patient is assisted onto the operating table, general anesthesia is induced. The head of the table supporting the patient torso is then raised, a small amount of Trendelenburg is applied, and the legs are lowered. The position is adjusted until the patient’s acromion is nearly parallel to the floor. The head and neck are positioned for patient comfort and secured. Pillows are placed under the knees, and a foam pad protects the contralateral elbow. Check to make sure that no pads or drapes interfere with access to the anterior or posterior shoulder.
The shoulder, arm, and hand are prepared, and an assistant grasps the wrist while the scrub nurse positions the bottom drape. The hand–wrist support is attached, and the forearm is placed on the patient’s lap. The upper drape is applied, and the suction drainage bag is affixed around the shoulder. The applicable surface anatomy is drawn, and the surgery begins ( Figs. 2.14–2.26 ).